
Page 1

Documentation

Description Documentation for the Game Creator tools

Author(s) Catsoft Works

Repository https://gamecreator.link/core

Copyright Catsoft Works © 2024

https://gamecreator.link/core

Page 2

Table of Contents

Page 3

Page 4

I. Game Creator

Page 5

1 Welcome to Game Creator

Every game begins with an idea – a world to build, a compelling game mechanic, a feature that players are bound to

fall in love with – but it takes a lot of work to bring that idea into fruition. Game Creator is a collection of tools to help

make the journey from idea to playable game a lot smoother.

Game Creator is sometimes informally abbreviated as GC.

1.1 Who is it for?

Game Creator is the perfect tool for both beginners and experienced users.

Newcomers will find an easy-to-use tool with a very smooth learning curve, thanks to the small amount of

concepts one has to learn in order to get started.

Experienced users will find that these small set of tools have a lot of depth and can be synergically used to create

any mechanic with ease, while favoring quick iteration.

Acronym

Page 6

Game Creator also has a very straight-forward API for programmers, from which they can extend the tools with new

features and seamlessly integrate them with the rest of the ecosystem of tools. Level and art designers can quickly

test their environments, creating a playable character and a camera type that fits their game with just a couple of

clicks. And game designers will be delighted with a plethora of tools that they can use and exploit to create

intrincate game mechanics.

1.2 How to get started

The easiest way to start learning how to use Game Creator is to jump to the Getting Started section. It overviews

everything you need to know to get up to speed and assumes you have no technical knowledge. It also contains links

to other learning resources from where to learn more.

1.3 What is it?

The Game Creator package comes with a slew of tools that help you very easily make the game of your dreams.

These tools have been carefully crafted to be as flexible and intuitive as possible. Each tool takes care of dealing

with the heavy-math under the hood and present it to you in a very human-friendly form, so you can focus on what

really matters: Making games.

Characters: Characters are entities living in your scene. These come loaded with common features, such as

inverse kinematics, obstacle avoidance navigation, user input, jumps, footstep sound effects and animation

systems.

Cameras: Cameras allow to control how your game is framed. From an orbiting third-person perspective with

zoom and geometry clipping avoidance to more traditional fixed camera angles, top-down perspectives or first-

person views.

Visual Scripting: Visual Scripting in Game Creator is very unique: Instead of using a typical node graph, it borrows

the concept of task lists. This makes it really easy to read, organize and keep all interactions under control

without the project quickly becoming a spaghetti mess.

Variables: Variables allow to keep track of the game's progress and storing it when the user saves the game.

Game Creator comes with more tools than the aforementioned above. However, we recommend beginners focus on

understanding these first. Experienced users and programmers can jump to the Advanced section to know more about

the rest.

1.4 Modules

Game Creator is built to be extremely flexible and extensible. Modules are add-on packages that extend the features

provided even further. For example, the Inventory module allows to easily define items with different properties,

which can later be equipped, consumed, crafted, dropped, sold, bought or stored in chests.

More tools

Page 7

Inventory: Manage and equip items, craft new ones and trade them with other merchants.

Dialogue: Create conversations with other characters with branching narratives.

Stats: Make complex RPG interactions with intertwined stats, attributes and status effects.

Quests: Keep your game's progress and lore under control with a mission manager.

Behavior: Easily manage character's AI using Behavior Trees and other mechanisms.

Perception: Allow entities to use sight, smell or hearing to understand the world.

Shooter: Create long-ranged shooting mechanics.

Melee: Define close quarter combat mechanics with parries and combos.

Traversal: Give characters the ability to climb and other traversing skills.

Modules do not just extend Game Creator's capabilities, but can also communicate with other Modules. This allows to

intertwine their features and develop even more complex game mechanics.

A very common case is using the Dialogue module along with the Stats. The first one allows to easily manage

conversations between characters, where the player is prompted with choices and characters react to these. The Stats

module, on the other hand, allows to define RPG traits to objects.

By combining these two modules you can create more interesting mechanics, such as displaying an option during a

conversation with a character, where trying to intimidate it will only yield in success if the player has a certain stat (for

example strength) above a certain value.

1.5 Documentation

If you're reading this from a PDF file, make sure you're reading the latest version of the documentation. Click

Download PDF to get the latest version.

However, we recommend you read this documenation from the website itself, which contains GIFs, higher quality

images and better navigation options. PDF should only be used as an offline alternative.

The documentation is structured as follows:

Modular synergy

Example of use case

https://docs.gamecreator.io/assets/public/documentation.pdf

Page 8

1. The top navigation shows a list of all the available Modules with their own documentation.

2. The central page is dedicated to the content of the current page.

3. The left side-bar shows the current page you are reading.

4. The right side-bar shows the table of contents of the current page.

Game Creator 2.0 is not compatible with Game Creator 1.x because its code base has been re-architectured. However,

most concepts are identical or very similar.

Each module has one or multiple pages dedicated to the description of what each sub-system does, with clear

examples, tips and tricks. Moreover, for those who want to go one step further, all sub-systems have an Advanced

chapter with more technical details on how it works and how it can be extended through the exposed scripting API.

1.6 Errata

If you find a mistake or omission in the documentation, please send us an email at docs@gamecreator.io with a link

to the relevant entry and an explanation what you think is wrong. We'll take a look and make any necessary updates.

Game Creator 1.x Support

mailto:docs@gamecreator.io

Page 9

I.I Getting Started

Page 10

2 Getting Started

Welcome to the Getting Started section. Here you will find all necessary resources to get you started with Game

Creator.

Installation: Learn how to install Game Creator from the Unity Asset Store.

First Steps: Get to know the basic first steps towards using Game Creator.

Once you are comfortable with the core concepts, we recommend checking the Examples that come with Game

Creator and the free Courses available on the website. If you prefer to learn in non-written format, you can also check

our Youtube channel, where we upload new video tutorials.

Examples: Discover examples to learn from and production-ready templates.

Video Tutorials: A collection of courses you can take at your own pace.

We also recommend checking out the Game Creator Hub: It's a community-driven platform where anyone can

download further free Instructions, Conditions and Events.

Game Creator Hub: Explore how the Hub can help you connect with other developers and expand the tools at your

disposal.

https://www.youtube.com/channel/UCDFnEqD5mHGwiHK22olcDaw
https://gamecreator.io/hub

Page 11

3 Installation

This guide explains how to set up your Game Creator project from scratch. It includes information about

prerequisites, installing the package, creating an initial workspace and verify your setup.

3.1 Creating a new project

Start by downloading the Unity Hub software and install the latest Unity version. Create a new blank project and

choose the rendering pipeline that suits you best.

We recommend using the Built-in Rendering Pipeline (BRP) if it's the first time you're using Unity or you just want to try

out Game Creator. If you want to use URP or HDRP, convert the materials automatically clicking on Edit → Rendering →

Materials → Convert all built-in materials to URP/HDRP.

Get the Game Creator core package from the Unity Asset Store following the link below:

Get Game Creator

Once you have purchased it, click on the "Import" button on the website and the Unity Editor's Package Manager

window should appear with the Game Creator package selected. Click on Download and Import afterwards.

Rendering Pipeline

https://unity3d.com/get-unity/download
https://gamecreator.link/core

Page 12

Let the process complete and if everything went fine, your console shouldn't have any errors. If you do, please feel

free to reach out to our support email.

3.2 Verify installation

If you have successfully installed Game Creator you should see a new "Game Creator" menu at the top-toolbar with a

set of options. You'll also have access to a new "Game Creator" section right clicking on both the Hierarchy panel and

the Project panel.

3.3 Setting up for Git

We highly recommend using GitHub or GitLab for backing up your projects. If you use Git as your main repository

source be sure to add the following snippet at your .gitignore file:

This willl avoid adding the offline documentation file to your git repository as well as the examples & code from the

Game Creator asset. The reason why the code can be ignored is that it can be easily downloaded from the Asset

Store. If you prefer to save a local copy of the current version of your Game Creator package, skip the last two lines

and only include the following on your .gitignore file:

Game Creator

/Assets/Plugins/GameCreator/Documentation.pdf

/Assets/Plugins/GameCreator/Packages

mailto:support@gamecreator.io
https://github.com/
https://gitlab.com/

Page 13

Game Creator

/Assets/Plugins/GameCreator/Documentation.pdf

Page 14

4 First Steps

In this section you'll learn to setup a very simple example that uses some of the core features of Game Creator. It

shouldn't take you more than 5 minutes to have it up and running.

4.1 Preparing the scene

Let's start creating the geometry that will hold the scene. Right click on the Hierarchy Panel and select 3D Object →

Plane. This is going to be the floor.

If the scene doesn't have a light, create one right clicking again on the Hierarchy Panel and select Light → Directional

Light and place it somewhere that shines downwards towards the plane.

Finally, if the scene doesn't have a camera object, create one clicking on the Hierarchy Panel and select Create →

Camera. Select it and, in the upper-part of the Inspector window, change its tag from Untagged to MainCamera . You

should also change the camera's position and rotation so it points towards the center of the plane, in order to

visualize what happens in it.

4.2 Creating the Player

Page 15

To create a player character, open the Hierarchy Panel context menu and select Game Creator → Characters →

Player. This should have created a character object in the scene in T-pose. If you click play, you should be able to

control the default player using the WASD keys or a controller, if you have one plugged in.

4.3 Creating a camera

Game Creator uses Camera Shots to tell the main camera how to behave and which target/s to follow. The easiest

way to follow the player character is to use the Third-Person camera shot, which automatically orbits around the

player using the mouse's movement and allows to zoom in/out.

To create a Camera Shot open again the Hierarchy Panel's context menu and select Game Creator → Cameras →

Camera Shot.

Creating a new Camera Shot will automatically add the Main Camera component on the scene's main camera, if any at

all. If the main camera doesn't have any Camera Shot assigned, it will assign this newly created shot.

The default Camera Shot is the Fixed one. However, we want to use the Third-Person Orbit shot. To change the type

of camera shot, click on its name and select Third Person from the dropdown menu.

New options should appear now. We need to specify the target at which the camera will look at and orbit around. In

both cases, this is the Player, so choose the "Player" option from the Look Target and Orbit Target fields.

Automatic camera detection

Page 16

Enter Play-Mode and you should be able to move the player like before, but the camera should also track it and orbit

around it using the mouse or controller's right stick.

Check out Game Creator's free courses for more step-by-step tutorials

Next Steps

https://gamecreator.io/learn/courses

Page 17

5 Toolbar

Since version 2.3.15, Game Creator comes with a dockable Toolbar that can be used to create common components

in the scene view.

Page 18

If the Toolbar is not displayed by default, focus on the scene view and right click on the top tab and select Overlay

Menu. This will pop a vertical menu that allows to show/hide different toolbars. Click on Game Creator to enable its

visibility.

The toolbar can be docked as any other toolbar. Simply drag the handles and drop them on any corner or edge.

The orientation can also be changed to fit the position. To do so, right click the handles and select one of the

following options:

Panel: Displays an horizontal stripe with the name and icons for each button

Horizontal: Shows an horizontal stripe with just the icons

Vertical: Similar to Horizontal, but displays each button vertically stacked

We recommend using either Horizontal or Vertical layouts. Hovering over any of the icons will display a small tooltip

with a description of what that button does.

Display Toolbar

Tooltips

Page 19

6 Examples

Game Creator comes packed with a collection of examples that have been carefully hand-crafted to speed up your

development process even further with common mechanics. You can think of them as templates of game

mechanics you can use for your projects.

To install an example, head to the top toolbar and click Game Creator → Install.... A window will appear with a

collection of available examples to install. Select one that you want to add and click Install.

An example may or may not have a list of dependencies. The Install window will display a green icon if the example

dependency is installed or a red icon if it is not. Installing a module with dependencies will install and update all

dependencies.

Once you do that, the example will appear under Assets/Plugins/GameCreator/Installs/ or you can simply click

the Select button to automatically select the example's folder.

Dependencies

Page 20

When installing an example, it is located at the Plugins/GameCreator/Installs/ directory. The name of the example's

folder is the [name of the module] followed by a dot, the [name of the example] followed by an @ (at) symbol and

the version number. For example, Game Creator's Example 1 with version 1.2.3 will be located at:

Plugins/GameCreator/Installs/GameCreator.Example1@1.2.3/ .

6.1 Uninstalling an Example

If you want to uninstall an example, simply delete root folder of the example. For instance, if you installed a Game

Creator example called "Example 1", you can right click the folder at

Assets/Plugins/GameCreator/Installs/GameCreator.Example1@1.0.0/ and choose Delete. This will permanently

delete the example from your project. However, you can still reinstall it again from the Install window.

Example Path

Page 21

I.II Characters

Page 22

7 Characters

One of Game Creator's main systems is the Character. It represents any interactive playable or non-playable entity

and comes packed with a collection of flexible and independent features that can be used to enhance and speed up

the development process.

7.1 Main Features

A Character is defined by a Character component that can be attached to any game object. It is organized into

multiple collapsable sections, each of which controls a very specific feature of this system.

Some of the most noticeable features are:

Player Input: An input system that allows to change how the Player is controlled at any given moment. Including

directional, point & click, tank-controls, and more.

Rotation Modes: Controls how and when the character rotates. For example facing the camera's direction, its

movement direction or strafing around a world position.

World Navigation: Manages how the character moves around a scene. It can use a Character Controller, a

Navigation Mesh Agent, or plug-in a custom controller.

Gestures & States: An animation system built on top of Unity's Mecanim which simplifies how to play animations

on characters.

Inverse Kinematics: An extendable IK system with feet-to-ground alignement or realistic body orientation when

looking at points of interest.

Footstep Sounds: A very easy to use foot-step system that mixes different sounds based on the multiple layers of

the ground's materials and textures

Dynamic Ragdoll: Without having to configure anything, the Ragdoll system allows a character to seamlessly

transition to (and from) a ragdoll state.

7.2 Player Character

The Player character uses the same Character component as any other non-playable character but with the

difference that it has the Is Player checkbox enabled. A Character with this option enabled processes the user's

input based on its Player section.

There can be only one Player character per scene. You can use the Change Player instruction to change who the

Playable character is, but at any given time, just one Character might have the Is Player checkbox ticked.

One Player per Scene

Page 23

Note that when creating a Player game object from the Hierarchy menu or the Game Creator Toolbar, it ticks the Is

Player checkbox by default.

Shortcut Player

Page 24

8 Component

The Character system is built using a single component called Character component and handles everything a

character can do; From playing animations to footstep sounds, modifying animations though inverse kinematics and

much more.

8.1 General Settings

This block includes the big mannequin icon and two fields:

Is Player: Determines whether this character is a Player character or not. A Player character processes input

events and makes the character respond accordingly.

Update Time: Indicates whether the character should work with the internal game's clock the real-life clock.

Page 25

By default all characters should use the game's clock. Setting the game's time scale to zero will freeze the game, which

is useful for pausing it. However if your game has a mechanic where a character ignores the time scale, you can use

the unscaled real-life clock.

The mannequin icon isn't just an aesthetic ico, but a debugging tool. When the game is running, the icon will change

into a green colored one and will turneach of its limbs red every time the character performs a blocking action that

prevents that limb from doing something else. For example, performing a jump makes the legs be busy for a little

less than a second, as well as landing.

The mannequin icon will change into a red skull when the character is considered dead.

8.2 Kernel Settings

This block is the most important one. A Character behavior is divided into 5 main categories (known as Units) and

each one can be changed individually without affecting the rest.

This settigs block is called the Kernel of the character and each individual row is called a Control Unit or Unit for short.

To change each type of Unit click on the right-most icon of each and choose the implementation you want. Clicking

on the name of the Unit will expand/collapse its available options.

Game Time vs Unscaled Time

Names

Page 26

Game Creator comes with a collection of Units so you can customize how you want your characters to work. However,

these lists are not fixed and can be extended via code. As Game Creator grows, so will the amount of options available.

If you are a programmer you can create Unit that integrates a third-party character system. To know more about

extending the Character component see the Character Controller section.

8.2.1 Player

The Player unit controls how the character is controlled by the user. It only affects the character if its Is Player

checkbox is enabled. Game Creator comes with a bunch of different Player units the user can choose from:

Directional: The character moves relative to the main camera's direction and reacting to the keyboard's WASD

keys or any Gamepad's Left Stick. This is the most common control scheme for most games.

Point & Click: The character moves towards the point in space click with the mouse cursor. If the Driver is set to

Navigation Agent, the character will try to reach the clicked position avoiding any obstacles along its path.

Tank: Pressing the advance key will make the character move forward in their local space, regardless of the main

camera orientation. This option requires the Tank option as its Rotation unit.

8.2.2 Motion

The Motion unit defines a character's properties and what it can or can't do. It comes with a list of options that can

be modified both in the editor and at runtime.

Game Creator comes with just a single Motion unit called Motion Controller. Unless the character is implementing a

custom character controller, the Motion unit shouldn't be changed to anything else.

Custom Character Controllers

Singular Unit

Page 27

These options are:

Speed: The maximum velocity at which the character can move. In Unity units per second.

Rotation: The maximum angular speed at which the character can rotate. In degrees per second.

Mass: The weight of the character. In kilograms.

Height: How tall the character is. In Unity units.

Radius: The amount of space the character occupies around itself. In Unity units.

Gravity: The pull force applied to the character that keeps it grounded.

Page 28

Terminal Velocity: The maximum speed reached by a character when falling.

Use Acceleration: Determines if the character accelerates/decelerates when moving. If set to false, the character

will start moving at full speed.

Acceleration: How fast the character increases its velocity until it reaches its maximum speed.

Deceleration: How fast the character decreases its velocity until it stops.

Can Jump: Determines if the character can execute a jump.

Air Jumps: The number of double jumps the character can perform in mid-air. Most games allow zero or up to one

air-jump.

Jump Force: The vertical force used when executing a jump.

Jump Cooldown: The minimum amount of time that needs to pass between each successive jump. Useful to

prevent the user from spamming jumps.

The Motion unit also has the Interaction section at the bottom, which allows to configure how the character can

interact with elements from the scene.

8.2.3 Driver

The Driver unit is responsible for translating the math of the processed motion data into actual movement.

Depending on the controller type the character will move slightly different.

Character Controller: The default unit. It uses Unity's default Character Controller which provides a versatile

controller which should work fine for most cases.

Navmesh Agent: It uses Unity's Navmesh Agent as the character controller. It allows to avoid obstacles when

moving a character to a point in space but has the con that prevents the character from being able to jump.

Rigidbody: It uses Unity's Rigidbody component so the character is affected by external forces using Unity¡s

Physics Engine.

Since version 2.9.36 the Driver unit comes with an Axonometry field that allows to post-process the character

movement and constrain by some rules. These rules can be:

Side-Scroll XY: The character can only move within the X axis and gravity affects the Y axis. Locked on zero in Z

axis.

Side-Scroll YZ: The character can only move within the Z axis and gravity affects the Y axis. Locked on zero in X

axis.

Isometric 8 Directions: The character can only move around the XZ plane in multiples of 45 degrees.

Isometric Cardinal: The character can move north, south, east and west.

Isometric Ordinal: The character can move in diagonals from world-space perspective.

Axonometry Settings

https://docs.unity3d.com/Manual/class-CharacterController.html
https://docs.unity3d.com/Manual/Navigation.html
https://docs.unity3d.com/Manual/class-Rigidbody.html

Page 29

8.2.4 Rotation

The Rotation handles how the character rotates and its facing direction at any time. There are multiple Units

available by default although the most common one is the Pivot.

Pivot: The character rotates towards the direction it last moved to.

Pivot Delayed: Very similar to Pivot but the character waits a few seconds before it starts rotating towards the

direction it's moving. This option looks best for slow-paced movements, like walking slowly, sneaking or crawling.

Look at Target: The character always faces towards an object in the scene and wil strafe when moving sideways

relative to the object. This option is most used when locking onto enemies.

Object Direction: The character faces the direction of another object. This is mostly used third and first person

shooting games where the character must look straight towards where the camera aims so the weapon's

direction is aligned with the camera's point of view.

Towards Direction: The character faces a 3D world-space direction. Mostly used in games on-rails or infinite

runners.

Tank: The character pivots around itself when pressing the specified buttons.

It's important to highlight the fact that these options can be changed at runtime. For example, the player can use the

Pivot unit when wandering the world but switch to a Look at Target unit when encountering an enemy. The character

will seamlessly transition between them.

Since version 2.9.36 the Rotation unit also comes with an Axonometry field that allows to post-process the character

rotation and constrain it by some rules. These rules can be:

Side-Scroll XY: The character can only look at right of left.

Side-Scroll YZ: The character can only look forward or backwards.

Isometric 8 Directions: The character can only rotate in multiples of 45 degrees.

Isometric Cardinal: The character can rotate towards north, south, east and west.

Isometric Ordinal: The character can rotate in diagonals from world-space perspective.

It's worth noting that both Driver and Facing Axonometry values should match for best results.

8.2.5 Animation

The Animation unit controls how the character model moves as a reaction of any internal or external stimulus and

also manages the representation of the character's 2D or 3D model.

Switching at Runtime

Axonometry Settings

Page 30

Just like the Motion unit, there is one single Animation unit option available called Kinematic which controls any

generic character model's animations. There are different configuration blocks within the Kinematic animation unit:

Position: Determines the local position of the mannequin inside the Character component. Rotation and Scale

also change the transform of the mannequin in local space.

Smooth Time: Determines how long it takes to transition between most character's animations, in seconds.

Higher values make transitions look smoother but also take longer and feel less responsive. Lower values closer

to zero make the character feel more responsive but also snappier.

Mannequin: A reference to the intermediate game object between the root Character and the 3D model.

Animator: The Animator component of the character's 3D or 2D model.

The character's model Animator component should use Game Creator's Locomotion runtime animator controller or a

custom controller that follows the same parameter names. To use a custom runtime animator controller it is necessary

to implement a custom IAnimim unit (see Character Controller for more information).

Start State: Optional field that allows to set an initial character State. The starting state is set to layer number -1.

Reaction: An optional field that determines the default hit reaction for Shooter and Melee modules.

Runtime Animator Controller

https://docs.unity3d.com/Manual/class-Animator.html

Page 31

Combining the breathing and twitching systems allows using single-frame still poses feel like fully-fledged animations,

thanks to the additive breathing and twitching animations. In fact, Game Creator's default idle poses have a duration of

a single frame. It's the twitching and breathing animations that make the pose look like it's real.

8.3 Extra Settings

The Character component has 3 extra sections at the bottom of the component which allow to control more

specific parts of the character.

8.3.1 Inverse Kinematics

Inverse Kinematics (IK for short) allow characters to change their bone rotations in order to transform the overall

structure and reach with the tip a targeted position and rotation. A common use of Inverse Kinematics is making

sure the character correctly align their feet to the steepness of the terrain.

Game Creator allows to dynamically add or remove new IK systems onto each character individually and are

processed from top to bottom. To add a new IK system simply click onto the "Add IK Rig Layer" button and select the

option you want from the list.

You can also create your own custom IK systems. Check out the Custom IK section for more information.

The Character component comes with some common IK systems used on most games:

Look at Target: This IK system allows characters to slightly rotate their head, neck, chest and spine chain in order

to look at a specific point of interest. This is specially useful when paired with the Hotspots component. Requires

the character model to be Humanoid.

Align Feet with Ground: This IK system allows a character to automatically detect when the character is touching

the ground and smoothly align their feet with the inclination of the ground. It can also lower the position of the hip

so both feet touch the ground, in case the ground is very steep and one foot is higher than the other.

8.3.2 Footsteps

Still pose animations

Custom IK Rigs

Page 32

The Footstep system allows the character to signal when it has performed a step. This is useful when you want a

character to leave a trail of footprints, play some particle effects simulating the dust of each step or playing a sound

effect.

The Footstep system doesn't require the character model to be humanoid. It uses an array of objects that identify the

character's feet bones. By default it assumes the character is a human and has two feet, but this can be easily

customized clicking on the "Add Foot" button.

The Sound Asset field references a Footstep Sounds asset that determines which textures play which sound

effects. For more information about how to configure this asset see Footstep Sounds section.

The Footstep Sounds does not play the raw step sound effect but automatically distorts it in order for the player to hear

different slightly different sounds each time. It also changes the pitch of the sound if there are multiple layers of

textures, muffling those that are less prominent.

A Character's footsteps are determined by the feet phases (when the character touches ground with their feet). These

values are driven by animation curves. If you want to use custom animations, you can download and use for free a

custom tool for assigning feet phases clicking here.

8.3.3 Ragdoll

The Character component comes with a built-in Ragdoll physics system that allows to quickly turn any character

into an inanimate object that reacts to physics with a set of constraints on each of its limbs.

Humanoid and Generic characters

Physically accurate sounds

Custom Feet Phases

https://en.wikipedia.org/wiki/Ragdoll_physics

Page 33

The Ragdoll system uses the Skeleton configuration asset to determine which parts of the model correspond to which

bone. It can't work without one.

Transition Duration: When a character recovers from a ragdoll state, it plays an animation based on the direction

its body faces. This field determines the time it takes to blend between the ragdoll position to the animation clip

being played when recovering.

It is recommended to use large transition values, above 0.5 seconds. The character's limbs can be in very awkward

positions that doesn't match the initial pose of the recovery animation clip; so having small transitions will make the

character appear to snap into an animation, instead of smoothly blending into it.

Recover Face Down: The recovery animation played when the root of the character's ragdoll faces downwards.

Recover Face Up: The recovery animation played when the root of the character's ragdoll faces upwards.

For more information check its dedicated Ragdoll section.

Skeleton asset

Give plenty of transition time

Page 34

I.II.I Animation

Page 35

9 Animation

Game Creator has a built-in custom animation system built on top of Unity's Mecanim that makes it easier and faster

to manage character animations.

It introduces the concept of Gestures and States, which are two mechanisms that allow to play different types of

animations without having to previously register them inside an Animator Controller graph.

It is preferable that users use the Gestures and States system to manage and play all their animations. However if a

user prefers to use a more traditional approach, there's a base Mecanim layer that allows to use Unity's runtime

controller workflow. Check the Animator section to know more about this.

Gestures are animations that are played once and are removed from the animation graph when finished. For

example, an animation of a character throwing a punch can be played as a Gesture; This will make a character play

the punch animation and smoothly restore its previous animation after the animation finishes.

States are animations that are played on a repeating loop. For example, a character sitting on a chair is an Animation

State while a character moving crouched is a Locomotion State.

Animation States play a single animation clip over and over again, until told to stop.

Locomotion States are more complex states that react to certain parameters such as character speed. Can have

multiple clips transitioning and blending with each other.

Click on Gestures and States to know more about how to use them in your game.

Mecanim vs Gestures & States

Page 36

10 Animator

Character components reference a child game object called the Model which contains an Animator component.

This component must referece a Runtime Animator Controller graph, that determines which animations are played

when and how these transition between them.

10.1 Custom Model

Game Creator makes it very easy to change the 2D or 3D model from a character. All that needs to be done is to

open the Animation section of the Character component and drag and drop the Character prefab onto the

indicated drop zone.

To change the character model at runtime use the Change Model instruction.

10.2 Locomotion Runtime Animator

Changing model at runtime

https://docs.unity3d.com/Manual/class-AnimatorController.html

Page 37

Game Creator comes with a default Runtime Animator Controller called the Locomotion controller. It comes packed

with a collection of animations and features that fit most projects.

It is not recommended modifying the Locomotion controller. In most cases using a custom State is easier and provides

enough flexibility to create new simple or complex locomotion animations.

However if you need to use a custom Runtime Animator Controller you must also creata new class that implements

the IAnimim interface to feed the Character's data onto your custom controller. See Character Controller section for

more information.

Changing the Locomotion controller

Page 38

11 Gestures

The Gesture system allows characters to play a single animation that stops after it finishes. This is specially useful

for animations such as a character throwing a punch, vaulting an obstacle or waving a hand.

These animations are always played on top of any other animations.

11.1 Parameters

The easiest way to play a Gesture animation is using the Play Gesture instruction, which has a few configuration

parameters.

Page 39

It may seem a bit overwhelming the amount of parameters available for a single animation. Note that the most

important ones are the Character and Animation Clip fields. The rest can be left with their default values and should

work on most cases.

11.1.1 Character

The Character field determines the object that the animation clip will be played. The game object referenced must

contain a Character component in order to work. Otherwise the instruction will be skipped.

11.1.2 Animation Clip

The Animation Clip references an animation asset. Without this field the instruction will not work.

11.1.3 Avatar Mask

The Avatar Mask is an optional field that determines which parts of a character will play the animation and which

won't. If this field is left empty the whole body will play the animation. For more information about masking

animations, see the Unity documentation about Avatar Masks.

11.1.4 Blend Mode

The Blend Mode field determines whether the animation clip overrides or adds up its movement on top of any other

animations being played.

Too many options?

https://docs.unity3d.com/550/Documentation/Manual/class-AvatarMask.html

Page 40

Blend: The default parameter. Blend overrides any animations and plays the animation clip on top of them. This is

the most common option for most animations.

Additive: This blend mode allows to play an animation by adding up the motion on top of any other clips being

played.

11.1.5 Delay

The Delay field allows to start playing the animation after a certain amount of seconds have passed. If the value is

set to zero the animation will start to play immediatelly.

11.1.6 Speed

The Speed field is a coefficient that determines the speed at which the animation is played. A value of 1 plays the

animation at its original speed. Higher values will play the animation faster while lower ones will play the animation

slower. For example a value of 2 will play the animation twice as fast.

11.1.7 Root Motion

Determines whether this animation should take control over the character and use its root motion to also move and

rotate it. Notice that using root motion takes control of the character while the animation plays and the user's input

will be ignored.

11.1.8 Transitions

The Transition In field determines the amount of seconds the animation will take to blend between the current

animation and the new Gesture animation clip.

Similarly, the Transition Out field determines how much time, in seconds, it takes to blend out the current gesture

animation to the animation being played underneath.

11.1.9 Wait to Complete

Page 41

The Wait to Complete checkbox allows the instruction to be put on hold and only continue once the animation

finishes. This is specially useful when chaining multiple gestures one after another.

For more information about how to use instructions to interact with other systems, see the Visual Scripting section.

About Instructions

Page 42

12 States

The States system allows to dynamically blend in/out arbitrary animations or entire animator controllers at runtime.

All that needs to be done is to specify which animation or controller a character should play, and which layer should

it be assigned to.

It is important to note that the States system is built on top of Unity's Mecanim and it complements it; It does not

prevent or restrict from using any of its features. It simply adds a new and more flexible workflow on top of it.

12.1 Types of States

There are primarily two types of States, but both work the same way: An instruction feeds a State to a Character and

this one plays the animation/s based on the behavior of the State.

12.1.1 Animation States

Animation States are single animation clips that are played over and over again, until told to stop and blend out.

For example a character playing a single looped animation of sitting on a chair is an Animation State. These are the

most common and basic forms of States, where an Animation Clip must be provided and the Character plays it in a

loop.

Mecanim vs States

https://docs.unity3d.com/Manual/AnimationClips.html

Page 43

It is also possible to create an Animation State asset that allows to play a looped animation as well as providing a

fields for gestures that are played when entering and exiting the State. To do so, right click on the Project Panel and

select Create → Game Creator → Characters → Animation State and drop the Animation Clip file onto the

corresponding field.

The State Clip field determines which animation is played in a loop, while State Mask discerns which body parts are

affected by the animation. Note that this last field only works with Humanoid characters. See Avatar Mask for for

information about masking animations.

The Entry and Exit sections contain optional fields that allow to play a Gesture right before entering or exiting the

current State. For example, you may want a character to play the unsheathe sword animation every time it enters a

sword combat stance, and play the sheathe animation when exiting the combat stance state.

Since version 2.5.20 there's an Instruction list at the bottom of any State asset called On Refresh. These instructions

are called in order, from the lowest Layer to the upper-most one, any time a Character adds or removes a State.

On Refresh Instructions

https://docs.unity3d.com/Manual/class-AvatarMask.html

Page 44

Since version 2.9.34 each State contains a Properties section that allows to modify common values from a Character,

such as its linear and angular speed, jump options, gravity, etc...

Properties

Page 45

This allows to change the move speed from within the State itself. For example, let's say we have the following States:

Running State at layer 1 that sets the player's speed to 10

Walking State at layer 2 that sets the player's speed to 5

The "Running" State properties will be called first, and afterwards the "Walking" State, because it's on a greater layer

number. The second State will override the player's movement speed and set it to 5.

Removing the Walking State will run again the Properties values. However, this time, only the Running State properties

are called, and thus the player's speed will be set to 10.

12.1.2 Locomotion States

These are more complex States that react to certain parameters such as the speed of a character, its direction and

fall velocity. Locomotion States have multiple clips transitioning and blending with each other.

For example a character that idles in a prone position and crawls when the character moves is a Locomotion State.

To create a Locomotion State, right click anywhere on the Project Panel and select Create → Game Creator →

Characters → Locomotion Basic State or Create → Game Creator → Characters → Locomotion Complete State.

Changing Movement Speed

Page 46

The Locomotion State asset may seem a bit daunting at first, but it's fairly straight forward. There are two types of

Locomotion States and those are:

Basic States: Have an idle and an 8-axis directional animation clip fields for moving

Page 47

Complete States: Have an idle and a 16-axis directional animation clip fields for moving: 8 for moving at half

speed and another 8 for moving at full speed.

The first fields, Airborne Mode, controls the amount of animation clips available and can take one of the following

values:

Single: Displays a single animation clip for that particular phase.

Circular 8 Point: Displays animation clip fields for the 8 cardinal directions: Forward, Backwards, Right, Left and

each of the diagonals.

Circular 16 Points: Displays animation clip fields for the 8 cardinal directions, and another 8 for half-way points

between the first and the origin.

This decision comes down to the type of controller and animations available. If your game is meant to have analogic

controls, the user might slightly push the movement joystick forward, making the character move slow. In this case, it is

recommended using the Complete Locomotion State, as it allows to have both running and walking animations in a

single State.

12.2 Layers

The States system is built around the concept of Layers, which is similar to the concept found in image editing tools,

such as Photoshop. The idea is that any State is assigned a layer number. With higher numbers taking higher priority

when playing an animation.

8 Points vs 16 Points

Page 48

Let's say we have a character with three Layers, each one with a single State, numbered 1, 2 and 10 respectively.

In this case, the animation played would be be the one found at the layer number 10. However, if this layer was to be

removed, the animation at layer 2 would be the next one with highest priority and thus, its State would be played.

It is recommended to add a transition time when adding or removing a State from a Layer in order to smoothly blend

between the new animation and the one underneath.

When adding a new State onto a Layer that already has a State, this last one will be smoothly faded out taking into

account the new State's transition time, until it is replaced by the new one. After that happens, it will be automatically

disposed.

Note that although States can have different priorities, a Gesture animation will always have higher priority than any

State and will play on top of it.

Example

Gestures and States

Page 49

12.3 Weights

Setting a new State is not an all-or-nothing operation and the new animation can be blended by a percetage with any

other animations playing underneath the stack.

For example, if a character is currently playing a running upstraight animation, a running crouched animation can be

blended at 50% to to make the character look like it's running halfway between standing and crouched.

The weight can be modified at runtime using the Change State Weight instruction.

12.4 Entering a State

The easiest way to make a character enter an Animation or Locomotion State is using the Enter State Instruction.

The Character field references the targeted character game object that enters the state. The State Type field

determines whether the State is an Animation Clip, a State asset or a Runtime Animation Controller.

Game Creator allows to use a Runtime Animation Controller as a State. However, this is an advanced feature and

should only be used if one understands how Gestures & States work under the hood.

Weight at runtime

Runtime Animation Controller as a State

Page 50

The Layer field allows to determine which layer this State occupies in the Character's layer stack. Blend Mode by

default is set to Blend, which overrides the underlying animation with the animations provided by the State. If set to

Additive it adds up the new State's animation as a delta movement on top of any other animation being played.

The Delay field allows to delay in a few seconds the time to start playing the State. Speed is a coefficient value that

determines how fast the State plays. For example, a value of 1 makes the State play its animation at its default

speed. A value of 0.5 plays the animation at half speed and a value of 2 plays it twice as fast.

The Weight field determines the opacity of the State. A value of 1 plays the animation as it is. Lower values allow any

previous animations to bleed through and mix the effect between the new State and any other animation being

played in lower layers.

The Transition field is the time in seconds that the new State takes to fade in.

12.5 Exiting a State

The instruction Stop State can be used to smoothly stop playing a State on a character.

The Character field determines the targeted game object that stops playing a State found at the layer identified by

the Layer number field.

Similarly, the Delay and Transition fields allow to delay the fading of the State by a certain amount of seconds.

Page 51

I.II.II Inverse Kinematics

Page 52

13 Inverse Kinematics

Inverse Kinematics (IK for short) is the process of calculating the rotation of bones from a chain of bones, in order

for the leading one to reach a desired position. Game Creator makes use of both limbic and full-body IK.

A common case scenario is adjusting the bending of the knees so the character naturally plants its feet on the

ground.

13.1 Manage IK Rigs

The Character component has a section at the bottom that allows to manage which rigs affect the character and

change their properties.

The IK Rigs are excuted from top to bottom. So if two IK systems affect the same bone chains, the last rig will override

any previous ones.

To add a new Rig, click on the Add IK Rig button and choose one from the dropdown list.

Rig order matters

Page 53

13.2 Rigs

Game Creator comes with a few IK rigs that work out of the box:

Feet Align: Allows to align a Character's feet to uneven terrain.

Look at Target: Allows a Character to use the Look At system from Hotspots.

Page 54

14 Feet Align

This IK Rig allows a character to plant their feet and adjust the rotation on uneven terrain. This rig also allows the

hips to be lowered by a certain amount if the height difference between both feet is very large.

The Feet Align rig only works with Humanoid characters.

The Feet Align rig has the follow options:

Foot Offset: An optional vertical offset applied to each foot. This is useful in cases where the foot penetrates the

ground or floats above it, due to differences between the bone's tip position and skin mesh bounds.

Foot Mask: Allows to choose which Layers should the character consider when aligning with ground. For

example, water typically has a collider component, but the character should not align its feet on its surface.

Only for Humanoids

Page 55

15 Look at Target

The Look at Target rig allows a character to rotate their head, neck, chest and body in order to look at a Hotspot.

The Look at Target rig only works with Humanoid characters.

The Look at Target rig has the follow options:

Track Speed: The angular speed at which each bone rotates to track the target. In degrees per second.

Max Angle: The maximum peripheral angle, in degrees.

Head Weight: The contribution of the head to the total rotation.

Only for Humanoids

Page 56

Neck Weight: The contribution of the neck to the total rotation.

Chest Weight: The contribution of the chest to the total rotation. Note that the Chest is an optional bone and

some models may not have it.

Spine Weight: The contribution of the spine bone to the total rotation.

The default parameters have been carefully picked to work for the majority of human-like characters.

Default values

Page 57

16 Footstep Sounds

Game Creator's characters can mix and play multiple sound effects depending on the type of ground it's stepping on.

This system works for humanoid and non-humanoid characters alike. Though humanoids don't require any kind of

setup and work out of the box.

16.1 Detecting Steps

The Footstep System (also known as Phases system) uses Animation Curves to detect when a Character has one of

its limbs in contact with the ground and when it does not.

This system plays a role in other systems, such as correctly aligning the feet when standing on uneven terrain, or

detecting when the character takes a step, and plays a tiny dust particle and sound effect.

The Phases system supports up to 4 different phases, although humanoids only require 2 (one for reach leg).

By default, a Humanoid character has the following curve names assigned to each leg:

Phase-0 to the Left Leg

Phase-1 to the Right Leg

A non-humanoid character can also define the Phase-2 and Phase-3 if necessary.

Game Creator animations contain the phase curves already set up for you. However, if you plan on using your own

animations, you'll need to set them up by editing the Animation Clip and adding the Phase-0 and Phase-1 curves.

Humanoid and Non-Humanoid

Using custom animations

https://docs.unity3d.com/Manual/animeditor-AnimationCurves.html

Page 58

The phase curves are evaluated at runtime depending on the animation(s) being played at that time. If the value of a

phase is zero means the limb is currently not touching the ground and is high up in the air. On the other hand, if the

curve has a value of one, it means the limb is currently planted on the ground.

16.2 Playing Footstep Sounds

The Footstep Sounds system comes with a built-in tool for playing different sounds and sound variations depending

on the surface the character is stepping onto. To create a material sound library, right click on the Project Panel and

select Create - Game Creator - Common - Material Sounds .

Page 59

The Material Sounds asset allows to define which textures produce which sound effects. Each texture can have

multiple sound effects, which will be picked up randomly every time the character takes a step.

Note that although it's completely random, two sound effects will never be played in succession in order to avoid

repetition.

The Material Sounds asset also allows to instantiate a game object from a pool of prefabs at the impact position.

The instantiated object is aligned with the incision angle. This is very useful when spawning particle effects of dust.

The human hearing quickly recognizes sound patterns. To avoid hearing the same sound effects over and over

again, the Footstep Sound System intelligently shifts the pitch and speed of each audio clip every time it's played. By

doing so, a single clip can be played hundreds of times with various nuances that tricks the human hearing into

perceiving each clip as a different sound effect.

Pseudo-Random Sound Picking

Page 60

Floors are not always composed of discreet materials. For example, there might be a sound effect for when the player

steps on shallow water and another one when steps on sand. However, if the character runs along the shore, where

there's a blend between the water and sand textures, the resulting sound effect is a proportional mix between the two

audio clips and their pitch is shifted to fit how real-life audio blending occur.

Drop the Material Sounds asset onto the Character's Sound Asset to link them.

16.3 Reacting to Footsteps

The Footstep system also allows Characters to react every time a step is taken. Using the On Step Trigger, which is

executed every time a defined Character takes a step. This is useful for things like leaving footsteps behind.

Gradient Footstep Sounds

Page 61

I.II.III Ragdoll

Page 62

17 Ragdoll

A Ragdoll system lets characters react to physics and external forces without any direct input from itself. This is

commonly used for enemies that have been defeated or when the player falls unconscious due to a strong attack or

a big fall.

A Character requires a Skeleton definition asset in order to correctly identify the size of each of its bones and how

they form the joint connection chain.

Defining all Skeleton volumes and how these relate to their parent bones is tedious and time consuming process.

Luckily Game Creator makes it very easy to automatically generate a humanoid Ragdoll asset. With the Skeleton asset

selected, drag and drop any Humanoid 3D model onto the bottom drop-zone and it will generate the structure for you.

You can then tweak the values to perfectly match your model.

17.1 Starting and Stopping

Quickly generate a Skeleton

Page 63

To initiate a ragdoll state, simply use the Instruction Start Ragdoll and select the targeted character. Notice that the

player's input will still be in effect though. This is why Game Creator's default character comes with 2 Triggers that

make it even easier to handle Ragdolls: When a character is considered to be dead it will automatically trigger the

Start Ragdoll instruction on the character. When a character is revived, it will also automatically handle playing the

correct animation and get the character up from the floor.

This means that, in order to start and stop the ragdoll effects, all that needs to be done is to use the Instruction Kill

Character to disable any interactions from a character and it will automatically enter ragdoll-mode. On the other

hand, using the Revive Character Instruction will give back control to the character and get it up from the floor using

the correct animation.

The character will automatically handle transitioning from its ragdoll pose to the default idle animation and pick up the

most suitable gesture, depending on whether its currently facing down or up.

17.2 Configure Ragdoll Animations

To setup the getting up animations, select the Character and drag and drop the desired animations onto the Recover

Face Down and Recover Face Up clip fields.

Getting up

Page 64

The Transition Duration field allows to specify the duration between the time the character is not controllable due to

being in ragdoll-mode and recovered. Ideally this value will be a few milliseconds shorter than both recover

animations.

The most important part of a ragdoll is knowing the length and size of each of its physical bones and how they

interact with the rest of the body. This is done using the Skeleton asset file. To know more about configuring a

Skeleton asset and associate it with a Character, see the Skeleton section.

Page 65

18 Skeleton

A Skeleton asset is a scriptable object asset that contains all the necessary information to identify the bounding

volume of a character's bones and how these form a chain of joints that conforms the whole body.

The Skeleton asset is used on multiple systems, such as the Ragdoll system, or the Melee and Shooter hit detection

systems.

18.1 Create a Skeleton

To Create a Skeleton asset, right click on the Project Panel and select Create → Game Creator → Characters →

Skeleton.

To assign a Skeleton asset to a Character simply select the desired Character and expand the Animation tab. Drag

and drop the Skeleton asset onto its corresponding field.

What is it used for?

Page 66

18.2 Configure Skeleton

The Skeleton asset is divided into different sections:

The first is a big button that allows to enter Skeleton Configuration mode. In this mode, the scene is replaced by an

empty one with a character in the middle, which can be changed by dragging and dropping a prefab model onto the

field below and clicking on the Change Character button.

The second section determines the Physical Material and collision detection mode of the rigidbody system

stemmed from the volumes.

Page 67

At the bottom there's a list of all volumes set up. This list can be either manually configured or use the heuristic

creator for humanoid characters.

To more easily configure the volumetric bounds of a humanoid character, see the next section.

Readme!

Page 68

To create a volumetric bone, click on Add Volume and select the type of bone to create:

Box: A cubic volume. Mostly used for chest and flat surfaces.

Sphere: A spherical volume. Used for hands and head mostly.

Capsule: The most widely used volume bone. Used for most limbs.

Page 69

A Volumetric Bone is composed of a Bone Type, a volume definition and an optional Joint.

The bone type can be specified by setting the humanoid bone from a dropdown list or from a path. For example, to

reference the front right foot of a model of a Dog, the bone could be Root/Spine/Collar/Right_Leg/Right_Foot .

The volume definition depends on the type of volume created. For example, a Sphere volume bone contains a radius

and a position offset field.

The Joint field allows to determine how a bone is related to other bones via a joint system..

For more information about character joints, visit this Unity documentation link.

18.3 Setting up a Humanoid Skeleton

Game Creator comes with a tool that makes it much easier to automatically guess and extract the bounding volumes

of a humanoid model. To use it, simply change the character model using the Change Character button and click on

the Create Humanoid button. It will auto-magically approximate a Skeleton for you that you can then tweak it to your

game needs.

More on Joints

https://docs.unity3d.com/Manual/class-CharacterJoint.html

Page 70

Page 71

19 Markers

A Marker is a component that is used by Characters as destination points. It allows to define a target position and

rotation so the Character is at the correct location before doing something else, like opening a door.

A Marker has a yellow shaped arrow that indicates the direction the Character will face after moving towards it.

Optionally, a Marker can specify a Stop Distance threshold from which a Character is considered to have reached its

destination.

By default it's zero, but if the destination is a very crowded, there might not be enough space for a character to be at

the exact marker's position. Having some error threshold allows Characters to more or less reach their destination

without getting stuck or pushing other characters around.

Page 72

The Type field allows to determine how the Marker works. By default its set to Directional which forces the character

to end at the same position and rotation as the arror-shaped gizmo in the scene.

Another available mode is Inwards which tells the character to move to the closest point around a circle and rotate

towards its center. This is specially useful when you want the character to pick up an item and you don't care from

which angle it is picked up.

Page 73

20 Interaction

Game Creator comes with a built-in interaction system that lets characters (both Players and NPCs) dynamically

focus on a scene element and decide whether to interact with it or not.

It's important to note that a Character that is Busy cannot interact with Interactive elements.

20.1 Character setup

How a Character interacts with scene objects is specified in the Motion unit.

The Radius option determines the minimum distance an object has to be in order for the character to focus on it.

The Mode option allows to determine how to prioritize how objects are focused:

Near Character: Picks the closes object to the character's interaction center, which can be offset by a certain

amount. This option is best for console and games that require a controller.

Screen Center: Interactive objects closer to the center of the screen have higher priority. This is the best option

for first person games.

Screen Cursor: Interactive objects closer to the cursor take precendence. This option is best for point and click

adventures.

The character will automatically focus and unfocus any interactive object. To interact with the currently focused object,

use the Interact instruction.

20.2 Interactive Objects

Interaction when busy

Interact

Page 74

Any game object with the On Interact event on a Trigger component will be automatically marked as an interactive

one.

This event will be fired every time a character attempts to interact with this trigger.

If a character attemps to interact, but there is no Interactive object available, it will simply ignore the call.

Apart from the On Interact event, one can also detect when a Trigger becomes focused or loses focus (also known as

blur). This can be tracked using the On Focus and On Blur events.

Hotspots can also display a text or activate a prefab when the game object is focused by a character. To do so, you

can add the Text on Focus spot on a Hotspot component and it will display the chosen text every time the selected

character focuses on this interactive element.

Detect new Interaction

Page 75

21 Busy

The Busy feature allows to query whether a specific limb of the character is being used or not. This allows other

systems to determine whether an action can be performed or not.

For example, a character that is shooting with its right hand can set its right arm as busy. By doing so you can prevent

the character from opening a door with the right hand until the right arm is available again.

21.1 Busy at Runtime

When entering Play-Mode the mannequin icon at the top of the Character component will change its color from grey

to green.

Its color changes in real-time and indicates:

Green: The Limb is available to use.

Red: The Limb is currently busy.

You can use Instructions and Conditions to set and retrieve the current Busy status of a Character.

21.2 Scripting

The following concepts are meant for experienced programmers.

The follow properties can be queried and inform of the availability state of the limb or group of limbs:

Using the right hand

Coding Knowledge

Page 76

Additionally, limbs can be marked as busy or make them available using the MakeLimbXXX() method, where XXX is

the limb of the body. For example, to set the Left Leg as busy, call the MakeLegLeftBusy() method.

For more information about all the available methods on the Busy system, check the script under

Plugins/GameCreator/Packages/Core/Runtime/Characters/Busy .

IsArmLeftBusy : boolean

IsArmRightBusy : boolean

IsLegLeftBusy : boolean

IsLegRightBusy : boolean

AreArmsBusy : boolean

AreLegsBusy : boolean

IsBusy : boolean

All available methods

Page 77

22 Handles

Handles are an optional asset that can be used to determine the bone where a prop is attached to, and it's precise

position and rotation.

The Handles asset has a list that checks its Conditions from top to bottom. These conditions can determine which

location of the handle should be the most optimal.

For example, you could have a condition that checks if Self is a humanoid character or not. If it is, the prop could be

attached to the right hand (like a sword). Otherwise the prop would be attached on the beast's mouth.

Handles also help re-use the same position and rotation for multiple weapons, which comes in handy if a game has

lots of props to equip, such as swords, shields, daggers, etc...

Handles for Humans and Beasts

Page 78

I.II.IV Scripting

Page 79

23 Scripting

This section covers topics that require some degree of programming knowledge and assumes certain level of

coding expertise.

Character: How to customize and extend the character system.

Inverse Kinematics: How to construct new inverse kinematic character rigs.

Page 80

24 Character

Game Creator Characters have been build to be easy to use and highly customizable. This section go over what a

Character does every frame cycle. This will put you in perspective in order to create a custom Character that works

with Game Creator or you want to integrate a Character system from another package into Game Creator.

24.1 Kernel

The Character component is composed of 5 different Units which conform the Kernel. These units can be changed

at runtime without affecting the rest:

Player: Defines whether the Character is a playable one and how the user can interact with it. If you want to create

a custom Character input system, you'll need to implements the IUnitPlayer interface.

Motion: Acts as an interface between the scene and the Character. All movement commands are relayed through

this system and also takes into account the Player's information. It decides which locomotion system should be

used. If you want to create a different motion system for your characters, create a class that implements the

IUnitMotion interface.

Driver: Manages how the Character moves around the scene based on the Motion's input. If you want to integrate

another Character system from another Asset Store package, create a new class that implements from

IUnitDriver .

Facing: Is responsible for rotating the character towards a desired direction. For example, the default behavior is

to have the character look towards where it's moving. If you want to customize where the character faces, create

a custom class that implements the IUnitFacing interface.

Animim: This system takes the Driver's input and tells the Animator component which animation should be played

via Mecanim parameters. If you want to use a custom Animator for your Character, crete a class that implements

IUnitAnimim interface.

Every new cycle tick the Character updates all these systems in a very specific order.

Page 81

It starts by calling the Player's system Update() method. This takes the user's input and calls one of the Motion's

public movement methods:

MoveToDirection()

MoveToPosition()

After the Player's system has been processed, the Character calls the Motion system's Update() method. This is

where external forces are calculated, such as gravity, sliding through slopes, dashing, jumping, ...

The Motion system takes into account the Player's system before running the update. A system can access any of the

other's systems data before processing its Update() cycle.

After the final Motion movement is calculated, the Character executes the Driver's Update() method. This is where

the Transform component is updated based on the movement type provided by the Motion parameter.

After the Driver system is completed, the Facing system starts. Based on the information provided by the Driver and

Motion systems it calculates the direction in which the Character should be facing at.

Finally, the Character system calls the Animim's Update() method, which feeds the Animator component with the

necessary parameter values based on the information of the rest of the systems.

Communication between systems

Page 82

It is important to highlight the fact that each system is independent of the other. You can create a custom animation

system by implementing a IUnitAnimim interface and still use the default Player, Motion and Driver systems.

24.1.1 Player

The Player unit handles how the user interacts with the Player character. If the Character does not have the Is

Player field checked, this unit is skipped entirely.

The Player also contains the IsControllable flag that defines whether a character processes the input received or

not. This is very useful when a character is in the middle of a cutscene and you don't want the user to have control

over the player.

24.1.2 Motion

The Motion unit is the brain of the character. It contains all of its quirks, such as its height, its move speed, terminal

velocity and so.

The Motion unit also is in charge of receiving any locomotion commands:

MoveToDirection defines a direction towards where the character must go. This method has to be called every

frame or the character will stop.

StopToDirection stops the character's movement. Useful when the character moves due to its deceleration

value.

A character can also be instructed to move to a certain position:

MoveToLocation instructs a character to move to a specific location. The Location class accepts a position

and/or a rotation.

MoveToTransform instructs the character to move to a specific transform's position. If the transform changes its

position, the character will follow it until it reaches the target.

MoveToMarker is similar to the previous method, but also takes into account the marker's rotation and forces the

character to end facing the same direction as the navigation marker.

A character can also follow another target without an end condition:

StartFollowingTarget starts following a target and stays within a minRadius and maxRadius distance.

StopFollowingTarget instructs a character to stop following a target.

The Motion unit is also responsible for dealing with character's jumps. The Jump() method will instruct a character

to perform a jump (or air jump), if it's possible.

24.1.3 Driver

Modular design

Page 83

The Driver unit controls how a character moves around the scene: Whether it's using Unity's Character Controller, the

Navigation Mesh Agent for obstacle avoidance or a physics-based rigidbody entity.

This unit recieves the locomotion information of Motion and Facing, and transforms it into a physical translation and

rotation.

24.1.4 Facing

The Facing unit controls where the body of the character (not the head) points at. By default all characters do not

rotate their body unless they are moving; in which case the body rotates towards where the character is moving.

However, there are certain situations where the character might want to temporary face at a certain direction. For

example, when the character aims with the gun at a certain object, or when talking to a character. Game Creator

comes with a layer system that provides a neat solution for these cases.

If you plan on creating your own facing system, we recommend creating a class that inherits from TUnitFacing

instead of the interface IUnitFacing . This base class comes with the layer system built out of the box, so you don't

have to recode it.

The Facing system interfaces provides access to 3 methods:

int SetLayerDirection(int key, Vector3 direction, bool autoDestroyOnReach)

int SetLayerTarget(int key, Transform target)

void DeleteLayer(int key)

The first two methods, SetPlayerDirection and SetLayerTarget allow to make the character look at a certain

direction or keep track of a particular scene object. Making the character change its default direction is done using a

layer system.

When any of these methods is called for the first time, it creates a new entry in the layer system and returns its

identifier: an integer known as key . To subsequently update a particular layer, simply pass as the key argument the

resulting key from the previous iteration.

For example, if you want to make a character look at a certain character (defined by the variable lookAtTransform),

you'll simply need to call:

Recommendation

Page 84

It is important to note that the layer system won't throw any exceptions. If you try to attempt to delete a layer but the

key doesn't exist, it will simply do nothing.

When calling the StartFacing() method, the character will smoothly rotate towards the target defined until the

StopFacing() method is called.

However, in some cases, you may not want to manually remove the facing layer, but instead stop facing a particular

direction when the character reaches its target direction. For these cases, simply set the SetLayerDirection

method's last parameter to true . This will tell Game Creator to automatically remove the layer when the character

reaches its target direction.

For example:

24.1.5 Animim

The Animim unit handles everything related to the visual representation of a character: From its appearance to its

animations.

This unit requires an Animator component reference in order to deal with animations

private int key = -1;

public Character character;

public Transform lookAtTransform;

public void StartFacing()

{

IUnitFacing face = this.character.Facing.Current;

this.key = face.SetLayerTarget(this.key, this.lookAtTransform, false);

}

public void StopFacing()

{

IUnitFacing face = this.character.Facing.Current;

face.DeleteLayer(this.key);

}

No Exceptions

public Character character;

public Vector3 direction;

public void LookAt()

{

IUnitFacing face = this.character.Facing.Current;

face.SetLayerDirection(-1, this.direction, true);

}

Animator required

Page 85

The default character system comes with a set of procedural animations played on top that add subtle but

consistent movement across different animations, such as breathing and exertion. The breathing rate and exertion

amount can be modified using the HeartRate , Exertion and Twitching proprerties.

24.2 Change Model

To change a character model, call the ChangeModel(...) method. Its signature contains 2 parameters:

A prefab object reference, which should be the FBX model

A configuration struct of type ChangeOptions

This last optional parameter allows to define the new model's footstep sounds, its skeleton's bounding volumes as

well as a new animator controller and an offset. For example, to change the player's model without any optional

parameters:

GameObject instance = character.ChangeModel(prefab, default);

Page 86

25 Custom IK

Characters in Game Creator have a layered Inverse Kinematic system that can be stack one after another in order to

modify the animation of a character. The most common form of inverse kinematics is the Feet IK, which makes sure

a character's feet are correctly placed and aligned with the floor below it.

25.1 Accessing a Rig

Accessing a rig is done using the IK property of the Character's component. To deactivate the rig that aligns the feet

on the ground, for example, can be done using:

Note that character.IK.GetRig<RigFeetPlant>() returns an instance of that particular rig (null if it can't be found).

25.2 Creating a custom Rig

Game Creator offsers two types of IK system wrappers:

Riggings powered by DOTS

Riggings powered by the AnimatorIK method

To create a new IK system you must crete a class that inherits from either TRigAnimationRigging (for DOTS) or

TRigAnimatorIK (for AnimatorIK). We recommend using the new DOTS-based approach when possible, as it's more

performant.

In either case, you should override the DoStartup(...) and DoUpdate(...) methods, which are called once at the

beginning and every frame respectively.

character.IK.GetRig<RigFeetPlant>().IsActive = false;

public class MyCustomRig : TRigAnimationRigging

{

protected override bool DoStartup(Character character)

{ }

protected override bool DoEnable(Character character)

{ }

protected override bool DoDisable(Character character)

{ }

protected override bool DoUpdate(Character character)

{ }

}

Page 87

I.III Cameras

Page 88

26 Cameras

Cameras are devices that capture and display the world to the user. Game Creator uses two components to

determine how the action is framed:

Camera Controllers: A component attached to the camera. For itself it does nothing but mimic the behavior that

its active camera shot feeds. By default, the Main Camera component is the primary camera controller.

Camera Shot: A component that has multiple configurations, depending on which, its associated camera

controller will respond in one way or another.

For example, if the camera controller Main Camera has the Third Person Shot associated with it, the main camera

will mimic the behavior of that shot, which is to follow and look at a target, while the user can orbit around it.

A camera controller can transition to another camera shot. This transition can either happen over time, or instantly.

Page 89

27 Camera Controller

A Camera Controller is a component attached to a camera object that has a associated at most one Camera Shot

reference. This associated camera shot can be changed at runtime and will dictate the behavior of the camera

controller.

Most games will only have one single camera. The camera in these cases will have the Main Camera component

attached, which is a camera controller that can be accessed globally by any script.

27.1 Creating the Main Camera

To creata a main camera, right click on the Hierarchy Panel and select Game Creator → Cameras → Main Camera

from the dropdown menu.

The Main Camera component has three distinct sections:

Game Time: Defines the time mode used to update the camera. By default it uses the Game Time option, which

can pause time when the time scale is set to zero.

Main Camera

Page 90

Shot: Determines the Camera Shot associated with this camera controller. If none is set, the camera won't have

any behavior.

Avoid Clipping: Allows the camera to avoid clipping through the geometry of the scene.

The Shot's smoothing options determine how much the camera lags from the Shot's behavior. It's recommended to add

some lag to avoid any jittering. However, introducing too much lag will make controls feel a a bit unresponsive.

27.2 Transition to a new Shot

To transition a Camera Controller from one Camera Shot to another one, it's recommended to use the Change Shot

instruction.

Simply drop in the Camera Shot you want the Camera Controller mimic and how long should it take to transition.

Game Creator will handle the rest.

Smooth Camera Movement

Page 91

28 Camera Shots

Camera Shots are components that provide the Camera Controller (or Main Camera) information about how they

should move and behave.

Think of Shots as a collecion of camera angles scattered around the scene, each trying to frame the action as best as

possible. Then you, the Director, decide which camera is visualized on the screen, for how long and when to swap to

another shot.

28.1 Creating a Camera Shot

To create a Camera Shot right click on the Hierarchy panel and select Game Creator → Cameras → Shot Camera

from the dropdown menu. This will place a new game object on the scene with the Camera Shot attached to it.

If your scene doesn't have a Main Camera attached to the scene camera, creating a new Camera Shot will create one

for you and link it to the newly created shot automatically for you.

Camera Shots Analogy

Camera Shot + Main Camera

Page 92

A Camera Shot component contains its shot type and a collection of parameters that can be modified to fine-tune its

behavior. In the example above, the Third Person camera shot has 3 sections that allow to modify the target tracked,

whether the user should be able to zoom in/out and how the orbit should be done. Clicking on each of these

sections reveals or hides its content.

Since version 2.3.15 all Camera Shots have a toggle field called Is Main Shot.

Ticking this will allow to define it as the primary one, which can be used as a shortcut when selecting the Main Camera

Shot field drop a camera selection dropdown.

28.2 Camera Shot Types

To change a camera shot type, simply click on its type name. A dropdown menu will appear from which the new type

can be selected.

Is Main Shot

Page 93

Page 94

Since version 2.7.28 all Camera Shots come with a Viewport section that allows to customize multiple properties of the

camera when switching to the Shot, including the Field of View and the Projection mode.

28.2.1 Fixed Position

This camera shot doesn't move from its place. However, it can be instructed to keep track of a target's position by

pivoting around itself. Think of this camera's behavior as a security camera.

28.2.2 Follow Target

This camera is very similar to the Fixed Position but also allows to follow the target from a certain distance. Useful

for top-down view games like Diablo.

28.2.3 Follow Track

This camera shot allows to track a target as well as move along a pre-defined rail-like path. This path's position is

defined by the position of the targeted object along another path. This camera shot is useful for games that have

very linear corridors but want to smoothly turn the camera around corners.

28.2.4 Animation

This camera shot moves along a pre-defined path over a certain amount of time. When it reaches the end of the

animation, it stops there and does nothing else. This shot is very useful for cinematic sequences where multiple

animation shots can be chained together to dynamically follow the action.

28.2.5 First Person

Camera Viewport

Page 95

This shot is perfect for first person games. The target object (usually a humanoid) determines the position of the

shot and follows it while allowing to spin the head around.

Comes with a vast collection of features such as:

Head Bobbing: The amount of up and down and side movement due to the character's change of weight when

walking or running.

Head Leaning: A subtle rotation on the local X and Z axis that is applied when the character moves in order to

display the impulse required to go towards that particular direction.

Noise: Another subtle yet realistic random movement applied to both the rotation and translation of the shot to

simulate restless idle motion and breathing.

All these parameters can be changed at runtime to accomodate to different situations, such as increasing the noise

after sprinting and such.

28.2.6 Third Person

This shot is used on third person games where the camera follows a target but the user is free to orbit around it.

28.2.7 Lock On

This shot allows to follow a target's position while the rotation follows another one, always framing both targets on

screen. This shot is perfect for locking on enemies when making an action game or hinting the player something

they should not be missing.

28.2.8 Anchor Peek

This shot anchors itself to the chosen game object and allows to pan and tilt the camera vertically and horizontally,

up to a certain amount. The restitute field brings back the shot to the center if no further input is detected. This is

specially useful when using a gamepad controller and you want the character to peek around corners.

Page 96

I.IV Visual Scripting

Page 97

29 Visual Scripting

Game Creator comes with a unique high-level and intuitive visual scripting toolset that makes it very easy to code

interactions. It only consists of 3 components:

Actions: A list of instructions that are executed one after another.

Triggers: A component that listens to events in the scene

Conditions: Branch off to instructions, depending on certain conditions.

The Actions component consists of a list of Instructions. The Conditions component is made of Branches, which

contain a list of Conditions and Instructions. Lastly, the Trigger component listens for a specific Event in the scene.

Apart from these three visual scripting components, Game Creator also includes Hotspots, which is a special type of

component that doesn't directly affect gameplay, but highlights interactive objects in different ways: For example,

making a character's head turn towards a point when near, showing a text above an interactive element, and so on.

29.1 High Level Scripting

A high-level scripting language is a methodology in which programming interactions is closer to what humans are

used to use. For example, in Game Creator you can tell a character to follow a target object; freeing the user from

having to think what it means to follow an object.

Game Creator and each module comes packed with a unique set visual scripting tools. The Game Creator Hub is a web

platform where community members upload free Instructions, Conditions and Events for everyone to download and

use in their projects. Be sure to check it out!

29.2 Why not Playmaker

Why not both? Playmaker and Unity's Visual Scripting solution are graph-based, which tend to be closer to a

programming language. If you're used to using these, you'll find these complement Game Creator very well.

On one hand, Game Creator makes it very fast and easy to structure common interactions without the need to code

the low-level stuff. However, if you need more fine-grain control over some parts and you don't know how to code

your own Instructions, you can use these graph-based solutions that perfectly complement the process of making

games.

Visual Scripting nomenclature

Game Creator Hub

https://gamecreator.io/hub

Page 98

I.IV.I Actions

Page 99

30 Actions

Actions are components that have a list of individual Instructions which are executed from top to bottom. It's

important to note that an Instruction won't be executed until the previous one has finished.

Actions can be thought as task lists that must be completed from top to bottom.

30.1 Creating Actions

There are two ways to create an Actions object. One is to create an object that contains an Actions component, by

right clicking on the Hierarchy panel and selecting Game Creator → Visual Scripting → Actions. This creates a scene

object with the component attached to it.

However, an Actions component can also be added to any game object. Simply click on any game object's Add

Component button and type Actions.

To delete an Actions component, simply click on the component's little cog button and select "Remove Component"

from the dropdown menu.

Task List

Deleting Actions

Page 100

30.2 Adding Instructions

To add an Instruction to an Actions component, click on the "Add Instruction" button to pop a dropdown list with a

searchable field. Navigate through the different categories or search for a specific instruction and click it to add it at

the bottom of the list.

It is also possible to add Instructions at any point of the list. To do so, right click on any existing Instruction and

choose "Insert Above" or "Insert Below" from the contextual menu that appears.

Page 101

Game Creator uses an advanced indexed search algorithm that allows to both syntactically and semmantically

understand what the user is trying to search, even if the search contains mispelled words. For example, searching for

"move" will display the "Move Character" instruction, but also the "Change Position" one.

30.3 Built-in Documentation

All Instructions have built-in documentation that explain what it does as well as a small description of each of its

parameters. To access its documentation, either search for that particular instruction on the documentation, or right

click it on the Instruction and select Help. A new floating window will appear with all the necessary information.

30.4 Debugging Tools

Actions come with built-in tools that allow to easily visualize and what's happening at runtime. Right click on any

Instruction to pop a context menu with the Disable and add a Breakpoint options.

30.4.1 Disable Instruction

This option disables a particular instruction, as if it was not there.

Accessible Fuzzy Search

Page 102

The Instruction is greyed out and a special icon appears on its right side. Click the icon to enable the instruction

again.

30.4.2 Add a Breakpoint

A breakpoint pauses the Unity Editor upon reaching a particular Instruction, right before executing it. This is very

useful if you want to check the state of certain data before the execution progresses any further.

When an Instruction has a breakpoint, it displays a red icon on its right side. Clicking it will remove the breakpoint

from the Instruction.

It is important to note that breakpoints only work on the Editor and have no effect when building the project as a

standalone application.

Editor only

Page 103

I.IV.I.I Instructions

Page 104

31 Instructions

31.1 Sub Categories

Animations

Application

Audio

Cameras

Characters

Debug

Game Objects

Input

Lights

Math

Physics 2D

Physics 3D

Renderer

Scenes

Storage

Testing

Time

Transforms

Ui

Variables

Visual Scripting

Page 105

I.IV.I.I.I ANIMATIONS

Page 106

32 Animations

32.1 Instructions

Change Animator Float

Change Animator Integer

Change Animator Layer

Change Blend Shape

Play Animation Clip

Set Animation

Set Animator Boolean

Set Animator Trigger

Page 107

33 Change Animator Float

33.1 Description

Changes the value of a 'Float' Animator parameter

33.2 Parameters

Name Description

Parameter Name The Animator parameter name to be modified

Value The value of the parameter that is set

Duration How long it takes to perform the transition

Easing The change rate of the parameter over time

Wait to Complete Whether to wait until the transition is finished

Animator The Animator component attached to the game object

33.3 Keywords

Parameter Number

Animations » Change Animator Float

Page 108

34 Change Animator Integer

34.1 Description

Changes the value of a 'Integer' Animator parameter

34.2 Parameters

Name Description

Parameter Name The Animator parameter name to be modified

Value The value of the parameter that is set

Duration How long it takes to perform the transition

Easing The change rate of the parameter over time

Wait to Complete Whether to wait until the transition is finished

Animator The Animator component attached to the game object

34.3 Keywords

Parameter Number

Animations » Change Animator Integer

Page 109

35 Change Animator Layer

35.1 Description

Changes the weight of an Animator Layer

35.2 Parameters

Name Description

Layer Index The Animator's Layer index that's being modified

Weight The target Animator layer weight

Duration How long it takes to perform the transition

Easing The change rate of the parameter over time

Wait to Complete Whether to wait until the transition is finished

Animator The Animator component attached to the game object

35.3 Keywords

Weight

Animations » Change Animator Layer

Page 110

36 Change Blend Shape

36.1 Description

Changes the value of a Blend Shape parameter

36.2 Parameters

Name Description

Skinned Mesh The Skinned Mesh Renderer component attached to the game object

Blend Shape Name of the Blend Shape to change

Value The target value of the blend shape

Duration How long it takes to perform the transition

Easing The change rate of the parameter over time

Wait to Complete Whether to wait until the transition is finished

36.3 Keywords

Morph Target

Animations » Change Blend Shape

Page 111

37 Play Animation Clip

37.1 Description

Plays an Animation Clip on the chosen Animator

37.2 Parameters

Name Description

Animation Clip The Animation Clip that is played

Animator The Animator component attached to the game object

37.3 Keywords

Animate Reproduce Sequence Cinematic

Animations » Play Animation Clip

Page 112

38 Set Animation

38.1 Description

Sets the value of an Animation Clip

38.2 Parameters

Name Description

To The location where to save the Animation Clip

Animation Clip The Animation Clip reference to store

38.3 Keywords

Animation Clip Animator

Animations » Set Animation

Page 113

39 Set Animator Boolean

39.1 Description

Sets the value of a 'Bool' Animator parameter

39.2 Parameters

Name Description

Parameter Name The Animator parameter name to be modified

Value The value of the parameter that is set

Animator The Animator component attached to the game object

39.3 Keywords

Parameter Bool

Animations » Set Animator Boolean

Page 114

40 Set Animator Trigger

40.1 Description

Sets the value of a 'Trigger' Animator parameter

40.2 Parameters

Name Description

Parameter Name The Animator parameter name modified

Animator The Animator component attached to the game object

40.3 Keywords

Parameter Once Flag Notify

Animations » Set Animator Trigger

Page 115

I.IV.I.I.II APPLICATION

Page 116

41 Application

41.1 Sub Categories

Cursor

41.2 Instructions

Open Web Page

Quit Application

Page 117

42 Open Web Page

42.1 Description

Opens the specified URL with the default web browser

42.2 Parameters

Name Description

URL The route link to open. Must include the protocol prepended (http or https)

42.3 Keywords

Site Internet

Application » Open Web Page

Page 118

43 Quit Application

43.1 Description

Closes the application and exits the program. This instruction is ignored in the Unity Editor or WebGL platforms

43.2 Keywords

Exit Close Shutdown Turn

Application » Quit Application

Page 119

I.IV.I.I.II.I Cursor

Page 120

44 Cursor

44.1 Instructions

Cursor Texture

Cursor Visibility

Lock Cursor

Page 121

45 Cursor Texture

45.1 Description

Changes the image of the hardware cursor

45.2 Parameters

Name Description

Texture The new appearance of the cursor. The texture must be set to Cursor type

Tip The offset from the top left of the texture used as the target point

Mode Determines if the cursor is rendered using software or hardware rendering

45.3 Keywords

Mouse Crosshair Click

Application » Cursor » Cursor Texture

Page 122

46 Cursor Visibility

46.1 Description

Determines if the hardware cursor is visible or not

46.2 Parameters

Name Description

Is Visible If true the cursor is visible, unless it is set as Locked

46.3 Keywords

Mouse FPS Crosshair

Application » Cursor » Cursor Visibility

Page 123

47 Lock Cursor

47.1 Description

Determines if the hardware pointer is locked to the center of the view or not

47.2 Parameters

Name Description

Lock Mode The behavior of the cursor. The default value is None

47.3 Keywords

Mouse State FPS Center Confine

Application » Cursor » Lock Cursor

Page 124

I.IV.I.I.III AUDIO

Page 125

48 Audio

48.1 Instructions

Audio Mixer Parameter

Audio Source Pitch

Audio Source Volume

Change Ambient Volume

Change Master Volume

Change Music Volume

Change Snapshot

Change Sound Effects Volume

Change Speech Volume

Change Ui Volume

Fade All Ambient

Fade All Music

Play Ambient

Play Music

Play Sound Effect

Play Speech

Play Ui Sound

Stop Ambient

Stop Music

Stop Sound Effect

Stop Speech On Game Object

Page 126

49 Audio Mixer Parameter

49.1 Description

Changes the value of an Audio Mixer exposed parameter

49.2 Parameters

Name Description

Audio Mixer The Audio Mixer asset with the exposed parameter

Parameter Name A string representing the name of the exposed parameter

Parameter Value The value which the exposed parameter is set

49.3 Keywords

Float Exposed Effect Change

Audio » Audio Mixer Parameter

Page 127

50 Audio Source Pitch

50.1 Description

Changes the pitch of an Audio Source component

50.2 Parameters

Name Description

Audio Source The Audio Source component

Pitch The new targeted pitch to change

Transition How long it takes to reach the new value

50.3 Keywords

Clip Music

Audio » Audio Source Pitch

Page 128

51 Audio Source Volume

51.1 Description

Changes the volume of an Audio Source component

51.2 Parameters

Name Description

Audio Source The Audio Source component

Volume The new targeted volume to change

Transition How long it takes to reach the new value

51.3 Keywords

Clip Music

Audio » Audio Source Volume

Page 129

52 Change Ambient volume

52.1 Description

Change the Volume of Ambient music

52.2 Parameters

Name Description

Volume A value between 0 and 1 that indicates the volume percentage

52.3 Keywords

Audio Ambience Background Volume Level

Audio » Change Ambient volume

Page 130

53 Change Master volume

53.1 Description

Change the Master volume. The Master volume controls how loud all other channels are

53.2 Parameters

Name Description

Volume A value between 0 and 1 that indicates the volume percentage

53.3 Keywords

Audio Sounds Volume Level

Audio » Change Master volume

Page 131

54 Change Music volume

54.1 Description

Change the Volume of Music

54.2 Parameters

Name Description

Volume A value between 0 and 1 that indicates the volume percentage

54.3 Keywords

Audio Music Background Volume Level

Audio » Change Music volume

Page 132

55 Change Snapshot

55.1 Description

Smoothly transitions to a new snapshot over a period of time

55.2 Parameters

Name Description

Snapshot The Audio Mixer Snapshot that is activated

Transition How long it takes to transition to the new Snapshot

55.3 Keywords

Effect Transition Effect Change

Audio » Change Snapshot

Page 133

56 Change Sound Effects volume

56.1 Description

Change the Volume of Sound Effects

56.2 Parameters

Name Description

Volume A value between 0 and 1 that indicates the volume percentage

56.3 Keywords

Audio Sounds Volume Level

Audio » Change Sound Effects volume

Page 134

57 Change Speech volume

57.1 Description

Change the Volume of character Speech

57.2 Parameters

Name Description

Volume A value between 0 and 1 that indicates the volume percentage

57.3 Keywords

Audio Character Voice Voices Volume Level

Audio » Change Speech volume

Page 135

58 Change UI volume

58.1 Description

Change the Volume of UI elements

58.2 Parameters

Name Description

Volume A value between 0 and 1 that indicates the volume percentage

58.3 Keywords

Audio User Interface Button Volume Level

Audio » Change UI volume

Page 136

59 Fade all Ambient

59.1 Description

Stops all Ambient currently playing

59.2 Parameters

Name Description

Wait To Complete Check if you want to wait until the sound has faded out

Transition Out Time it takes for the sound to fade out

59.3 Keywords

Audio Ambience Background Fade Mute

Audio » Fade all Ambient

Page 137

60 Fade all Music

60.1 Description

Stops all Music currently playing

60.2 Parameters

Name Description

Wait To Complete Check if you want to wait until the sound has faded out

Transition Out Time it takes for the sound to fade out

60.3 Keywords

Audio Music Background Fade Mute

Audio » Fade all Music

Page 138

61 Play Ambient

61.1 Description

Plays a looped Audio Clip. Useful for background effects or persistent sounds.

61.2 Parameters

Name Description

Audio Clip The Audio Clip to be played

Transition In Time it takes for the sound to fade in

Spatial Blending Whether the sound is placed in a 3D space or not

Target A Game Object reference that the sound follows as the source

61.3 Keywords

Audio Ambience Background

Audio » Play Ambient

Page 139

62 Play Music

62.1 Description

Plays a looped Audio Clip. Useful for background music or persistent sounds.

62.2 Parameters

Name Description

Audio Clip The Audio Clip to be played

Transition In Time it takes for the sound to fade in

Spatial Blending Whether the sound is placed in a 3D space or not

Target A Game Object reference that the sound follows as the source

62.3 Keywords

Audio Ambience Background

Audio » Play Music

Page 140

63 Play Sound Effect

63.1 Description

Plays an Audio Clip sound effect just once

63.2 Parameters

Name Description

Audio Clip The Audio Clip to be played

Wait To Complete Check if you want to wait until the sound finishes

Pitch A random pitch value ranging between two values

Transition In Time it takes for the sound to fade in

Spatial Blending Whether the sound is placed in a 3D space or not

Target A Game Object reference that the sound follows as its source

63.3 Keywords

Audio Sounds SFX FX

Audio » Play Sound Effect

Page 141

64 Play Speech

64.1 Description

Plays an Audio Clip speech over just once

64.2 Parameters

Name Description

Audio Clip The Audio Clip to be played

Wait To Complete Check if you want to wait until the sound finishes

Spatial Blending Whether the sound is placed in a 3D space or not

Target A Game Object reference that the sound follows as its source

64.3 Keywords

Audio Voice Voices Sounds Character

Audio » Play Speech

Page 142

65 Play UI sound

65.1 Description

Plays a non-diegetic user interface Audio Clip

65.2 Parameters

Name Description

Audio Clip The Audio Clip to be played

Wait To Complete Check if you want to wait until the sound finishes

Pitch A random pitch value ranging between two values

Spatial Blending Whether the sound is placed in a 3D space or not

Target A Game Object reference that the sound follows as its source

65.3 Keywords

Audio Sounds User Interface Beep Button

Audio » Play UI sound

Page 143

66 Stop Ambient

66.1 Description

Stops a currently playing Ambient audio

66.2 Parameters

Name Description

Audio Clip The Audio Clip to be played

Wait To Complete Check if you want to wait until the sound has faded out

Transition Out Time it takes for the sound to fade out

66.3 Keywords

Audio Ambience Background Fade Mute

Audio » Stop Ambient

Page 144

67 Stop Music

67.1 Description

Stops a currently playing Music audio

67.2 Parameters

Name Description

Audio Clip The Audio Clip to be played

Wait To Complete Check if you want to wait until the sound has faded out

Transition Out Time it takes for the sound to fade out

67.3 Keywords

Audio Music Background Fade Mute

Audio » Stop Music

Page 145

68 Stop Sound Effect

68.1 Description

Stops a currently playing Sound Effect

68.2 Keywords

Audio Sounds Silence Fade Mute SFX FX

Audio » Stop Sound Effect

Page 146

69 Stop Speech on Game Object

69.1 Description

Stops any Speech clips being played by a specific Game Object

69.2 Parameters

Name Description

Target A game object that is set as the source of the speech

69.3 Keywords

Audio Voice Voices Sounds Character Silence Mute Fade

Audio » Stop Speech on Game Object

Page 147

I.IV.I.I.IV CAMERAS

Page 148

70 Cameras

70.1 Sub Categories

Properties

Shakes

Shots

70.2 Instructions

Change To Shot

Revert To Previous Shot

Set Main Shot

Page 149

71 Change to Shot

71.1 Description

Changes the active Shot for a particular camera

71.2 Parameters

Name Description

Camera The target camera component

Shot The camera Shot that becomes active

Duration How long it takes to transition to the new Shot, in seconds

Wait To Complete If the instruction waits till the transition is complete

71.3 Keywords

Cameras Render Switch Move

Cameras » Change to Shot

Page 150

72 Revert to Previous Shot

72.1 Description

Reverts the active Shot of a particular camera to the previous one

72.2 Parameters

Name Description

Camera The target camera component

Duration How long it takes to transition to the new Shot, in seconds

72.3 Keywords

Cameras Render Switch Move

Cameras » Revert to previous Shot

Page 151

73 Set Main Shot

73.1 Description

Assigns a Camera Shot as the new Main Shot

73.2 Parameters

Name Description

Shot The new main Camera Shot

Cameras » Set Main Shot

Page 152

I.IV.I.I.IV.I Properties

Page 153

74 Properties

74.1 Instructions

Change Culling Mask

Change Field Of View

Change Orthographic Size

Change Projection

Change Smooth Time

Page 154

75 Change Culling Mask

75.1 Description

Changes the camera culling mask

75.2 Parameters

Name Description

Camera The camera component whose property changes

Culling Mask The mask the camera uses to discern which objects to render

75.3 Keywords

Cameras Render

Cameras » Properties » Change Culling Mask

Page 155

76 Change Field of View

76.1 Description

Changes the camera field of view

76.2 Parameters

Name Description

Camera The camera component whose property changes

FoV The field of view of the camera, measured in degrees

Duration The time in seconds, it takes for the camera to complete the change

Easing The easing function used to transition

76.3 Keywords

Cameras Perspective FOV 3D

Cameras » Properties » Change Field of View

Page 156

77 Change Orthographic Size

77.1 Description

Changes the camera's orthographic size

77.2 Parameters

Name Description

Camera The camera component whose property changes

Size The new size of the orthographic view

Duration The time in seconds, it takes for the camera to complete the change

Easing The easing function used to transition

77.3 Keywords

Cameras Orthographic Size 2D

Cameras » Properties » Change Orthographic Size

Page 157

78 Change Projection

78.1 Description

Changes the camera projection to either Perspective or Orthographic

78.2 Parameters

Name Description

Camera The camera component whose property changes

Projection Whether to change to Orthographic or Perspective mode

78.3 Keywords

Cameras Orthographic Perspective 3D 2D

Cameras » Properties » Change Projection

Page 158

79 Change Smooth Time

79.1 Description

Changes the camera Smooth Time

79.2 Parameters

Name Description

Camera The camera component whose property changes

Smooth Position The new smooth value for translation

Smooth Rotation The new smooth value for rotation

79.3 Keywords

Cameras

Cameras » Properties » Change Smooth Time

Page 159

I.IV.I.I.IV.II Shakes

Page 160

80 Shakes

80.1 Instructions

Shake Camera Burst

Shake Camera Sustain

Stop Camera Sustain Shake

Stop Shake Camera Bursts

Page 161

81 Shake Camera Burst

81.1 Description

Shakes the camera for an amount of time

81.2 Parameters

Name Description

Camera The camera that receives the burst shake effect

Delay Amount of time in seconds before the shake effect starts

Duration Amount of time the shake effect stays active

Shake Position If the shake affects the position of the camera

Shake Rotation If the shake affects the rotation of the camera

Magnitude The maximum amount the camera displaces from its position

Roughness Frequency or how violently the camera shakes

Transform [Optional] Defines the origin of the shake

Radius [Optional] Distance from the origin that the shake starts to fall-off

81.3 Keywords

Cameras Animation Animate Shake Impact Play

Cameras » Shakes » Shake Camera Burst

Page 162

82 Shake Camera Sustain

82.1 Description

Starts shaking the camera until the effect is manually turned off

82.2 Parameters

Name Description

Camera The camera that receives the sustain shake effect

Delay Amount of time in seconds before the shake effect starts

Transition Amount of seconds the shake effect takes to blend in

Shake Position Whether the shake affects the position of the camera

Shake Rotation Whether the shake affects the rotation of the camera

Magnitude The maximum amount the camera displaces from its position

Roughness Frequency or how violently the camera shakes

Transform [Optional] Defines the origin of the shake

Radius [Optional] Distance from the origin that the shake starts to fall-off

82.3 Keywords

Cameras Animation Animate Shake Wave Play

Cameras » Shakes » Shake Camera Sustain

Page 163

83 Stop Camera Sustain Shake

83.1 Description

Stops a Sustain Shake camera effect in a particular layer layer

83.2 Parameters

Name Description

Camera The camera target that stops a Sustain Shake effect

Layer The camera layer from which the Sustain Shake effect is removed

Delay Amount of time before the Sustain Shake effect starts blending out

Transition Amount of time it takes to blend out the Sustain Shake effect

83.3 Keywords

Cameras Animation Animate Shake Wave Play

Cameras » Shakes » Stop Camera Sustain Shake

Page 164

84 Stop Camera Shake Bursts

84.1 Description

Stops any ongoing camera Burst Shake effects

84.2 Parameters

Name Description

Camera The camera target that stops all its active Burst Shake effects

Delay Amount of time before all Burst Shake effects start blending out

Transition Amount of time it takes to blend out all Burst Shake effects

84.3 Keywords

Cameras Animation Animate Shake Impact Play

Cameras » Shakes » Stop Shake Camera Bursts

Page 165

I.IV.I.I.IV.III Shots

Page 166

85 Shots

85.1 Sub Categories

Anchor

Animation

First Person

Follow

Head Bobbing

Head Leaning

Lock On

Look

Third Person

Zoom

Page 167

I.IV.I.I.IV.IV Anchor

Page 168

86 Anchor

86.1 Instructions

Change Distance

Change Offset

Change Target

Page 169

87 Change Distance

87.1 Description

Changes the anchored position the Shot sits relative to the target

87.2 Parameters

Name Description

Distance The new distance relative to the target in local coordinates

Shot The camera Shot targeted

87.3 Keywords

Cameras View Cameras Shot

Cameras » Shots » Anchor » Change Distance

Page 170

88 Change Offset

88.1 Description

Changes the offset position of the targeted object

88.2 Parameters

Name Description

Offset The new offset in target local coordinates

Shot The camera Shot targeted

88.3 Keywords

Cameras Track View Cameras Shot

Cameras » Shots » Anchor » Change Offset

Page 171

89 Change Target

89.1 Description

Changes the targeted game object

89.2 Parameters

Name Description

Target The new target

Shot The camera Shot targeted

89.3 Keywords

Cameras Track View Cameras Shot

Cameras » Shots » Anchor » Change Target

Page 172

I.IV.I.I.IV.V Animation

Page 173

90 Animation

90.1 Instructions

Change Duration

Page 174

91 Change Duration

91.1 Description

Changes the duration it takes for the Animation shot to complete

91.2 Parameters

Name Description

Duration The new duration in seconds

Shot The camera Shot targeted

91.3 Keywords

Cameras Track View Cameras Shot

Cameras » Shots » Animation » Change Duration

Page 175

I.IV.I.I.IV.VI First person

Page 176

92 First Person

92.1 Instructions

Change Bone

Change Max Pitch

Change Sensitivity

Change Smooth Time

Change Target

Page 177

93 Change Bone

93.1 Description

Changes the Bone mount of the targeted object

93.2 Parameters

Name Description

Bone The new bone of the character

Shot The camera Shot targeted

93.3 Keywords

Cameras Shot

Cameras » Shots » First Person » Change Bone

Page 178

94 Change Max Pitch

94.1 Description

Changes the maximum rotation (up and down) allowed

94.2 Parameters

Name Description

Max Pitch The amount the Shot is allowed to look up and down, in degrees

Shot The camera Shot targeted

94.3 Keywords

Cameras Shot

Cameras » Shots » First Person » Change Max Pitch

Page 179

95 Change Sensitivity

95.1 Description

Changes how sensitive the Shot reacts to input

95.2 Parameters

Name Description

Sensitivity Input sensitivity for X and the Y axis

Shot The camera Shot targeted

95.3 Keywords

Cameras Shot

Cameras » Shots » First Person » Change Sensitivity

Page 180

96 Change Smooth Time

96.1 Description

Changes the maximum rotation (up and down) allowed

96.2 Parameters

Name Description

Smooth Time How smooth the camera operates when rotating

Shot The camera Shot targeted

96.3 Keywords

Cameras Shot

Cameras » Shots » First Person » Change Smooth Time

Page 181

97 Change Target

97.1 Description

Changes the targeted game object to view from

97.2 Parameters

Name Description

Target The new target

Shot The camera Shot targeted

97.3 Keywords

Cameras Track View Cameras Shot

Cameras » Shots » First Person » Change Target

Page 182

I.IV.I.I.IV.VII Follow

Page 183

98 Follow

98.1 Instructions

Change Distance

Change Target

Page 184

99 Change Distance

99.1 Description

Changes the offset distance between the Shot and the targeted object

99.2 Parameters

Name Description

Distance The new offset distance in world coordinates

Shot The camera Shot targeted

99.3 Keywords

Cameras Track View Cameras Shot

Cameras » Shots » Follow » Change Distance

Page 185

100 Change Target

100.1 Description

Changes the targeted game object to Follow

100.2 Parameters

Name Description

Follow The new target to follow

Shot The camera Shot targeted

100.3 Keywords

Cameras Track View Cameras Shot

Cameras » Shots » Follow » Change Target

Page 186

I.IV.I.I.IV.VIII Head bobbing

Page 187

101 Head Bobbing

101.1 Instructions

Enable Head Bobbing

Page 188

102 Enable Head Bobbing

102.1 Description

Toggles the active state of a Camera Shot's Head Bobbing system

102.2 Parameters

Name Description

Active The next state

Shot The camera Shot targeted

102.3 Keywords

Cameras Disable Activate Deactivate Bool Toggle Off On Cameras Shot

Cameras » Shots » Head Bobbing » Enable Head Bobbing

Page 189

I.IV.I.I.IV.IX Head leaning

Page 190

103 Head Leaning

103.1 Instructions

Enable Head Leaning

Page 191

104 Enable Head Leaning

104.1 Description

Toggles the active state of a Camera Shot's Head Leaning system

104.2 Parameters

Name Description

Active The next state

Shot The camera Shot targeted

104.3 Keywords

Cameras Disable Activate Deactivate Bool Toggle Off On Cameras Shot

Cameras » Shots » Head Leaning » Enable Head Leaning

Page 192

I.IV.I.I.IV.X Lock on

Page 193

105 Lock On

105.1 Instructions

Change Anchor

Change Distance

Change Offset

Page 194

106 Change Anchor

106.1 Description

Changes the targeted game object to Lock On

106.2 Parameters

Name Description

Anchor The new target to Anchor onto

Shot The camera Shot targeted

106.3 Keywords

Cameras Track View Cameras Shot

Cameras » Shots » Lock On » Change Anchor

Page 195

107 Change Distance

107.1 Description

Changes the distance from the anchor point

107.2 Parameters

Name Description

Distance The new distance in self local coordinates

Shot The camera Shot targeted

107.3 Keywords

Cameras Track View Cameras Shot

Cameras » Shots » Lock On » Change Distance

Page 196

108 Change Offset

108.1 Description

Changes the offset position of the targeted object

108.2 Parameters

Name Description

Offset The new offset in self local coordinates

Shot The camera Shot targeted

108.3 Keywords

Cameras Track View Cameras Shot

Cameras » Shots » Lock On » Change Offset

Page 197

I.IV.I.I.IV.XI Look

Page 198

109 Look

109.1 Instructions

Change Offset

Change Target

Enable Look

Page 199

110 Change Offset

110.1 Description

Changes the offset position of the targeted object

110.2 Parameters

Name Description

Offset The new offset in self local coordinates

Shot The camera Shot targeted

110.3 Keywords

Cameras Track View Cameras Shot

Cameras » Shots » Look » Change Offset

Page 200

111 Change Target

111.1 Description

Changes the targeted game object to look

111.2 Parameters

Name Description

Target The new target

Shot The camera Shot targeted

111.3 Keywords

Cameras Track View Cameras Shot

Cameras » Shots » Look » Change Target

Page 201

112 Enable Look

112.1 Description

Toggles the active state of a Camera Shot's Look system

112.2 Parameters

Name Description

Active The next state

Shot The camera Shot targeted

112.3 Keywords

Cameras Disable Activate Deactivate Bool Toggle Off On Cameras Shot

Cameras » Shots » Look » Enable Look

Page 202

I.IV.I.I.IV.XII Third person

Page 203

113 Third Person

113.1 Instructions

Change Aim

Change Alignment

Change Max Pitch

Change Sensitivity

Page 204

114 Change Aim

114.1 Description

Changes the aim settings of a Shot keeping the focus point

114.2 Parameters

Name Description

Shoulder The horizontal distance from the pivot

Lift The amount of upwards distance from the pivot

Radius The maximum amount of distance from the pivot allowed

Keep Center If true the point at the center of the screen is kept when aiming

Layer Mask The layer mask for the hit-scan to check the focus point

Shot The camera Shot targeted

114.3 Keywords

Cameras Shot

Cameras » Shots » Third Person » Change Aim

Page 205

115 Change Alignment

115.1 Description

Changes whether and how the Shot aligns behind the targeted object

115.2 Parameters

Name Description

Align with Target If the Shot should move behind the target after some idle time

Delay If the Shot should move behind the target after some idle time

Smooth Time The speed at which

Shot The camera Shot targeted

115.3 Keywords

Cameras Shot

Cameras » Shots » Third Person » Change Alignment

Page 206

116 Change Max Pitch

116.1 Description

Changes the maximum rotation (up and down) allowed

116.2 Parameters

Name Description

Max Pitch The amount the Shot is allowed to look up and down, in degrees

Shot The camera Shot targeted

116.3 Keywords

Cameras Shot

Cameras » Shots » Third Person » Change Max Pitch

Page 207

117 Change Sensitivity

117.1 Description

Changes how sensitive the Shot reacts to input

117.2 Parameters

Name Description

Sensitivity Input sensitivity for X and the Y axis

Shot The camera Shot targeted

117.3 Keywords

Cameras Shot

Cameras » Shots » Third Person » Change Sensitivity

Page 208

I.IV.I.I.IV.XIII Zoom

Page 209

118 Zoom

118.1 Instructions

Change Level Zoom

Change Min Distance

Change Smooth Time

Page 210

119 Change Level Zoom

119.1 Description

Changes the targeted zoom level percentage

119.2 Parameters

Name Description

Level The zoom level value between zero and one

Shot The camera Shot targeted

119.3 Keywords

Cameras Shot

Cameras » Shots » Zoom » Change Level Zoom

Page 211

120 Change Min Distance

120.1 Description

Changes the targeted zoom level percentage

120.2 Parameters

Name Description

Min Distance The minimum zoom distance between the target and the Shot

Shot The camera Shot targeted

120.3 Keywords

Cameras Shot

Cameras » Shots » Zoom » Change Min Distance

Page 212

121 Change Smooth Time

121.1 Description

Changes how smooth the zoom responds to input

121.2 Parameters

Name Description

Smooth Time How smooth is the zoom transition

Shot The camera Shot targeted

121.3 Keywords

Cameras Shot

Cameras » Shots » Zoom » Change Smooth Time

Page 213

I.IV.I.I.V CHARACTERS

Page 214

122 Characters

122.1 Sub Categories

Animation

Busy

Combat

Footsteps

Ik

Interaction

Navigation

Player

Properties

Ragdoll

Visuals

Page 215

I.IV.I.I.V.I Animation

Page 216

123 Animation

123.1 Instructions

Change Smooth Time

Change State Weight

Enter State

Play Gesture

Stop Gesture

Stop State

Page 217

124 Change Smooth Time

124.1 Description

Changes the average blend time between locomotion animations

124.2 Parameters

Name Description

Smooth Time The target Smooth Time value. Values usually range between 0 and 0.5

Duration How long it takes to perform the transition

Easing The change rate of the parameter over time

Wait to Complete Whether to wait until the transition is finished

Character The game object with the Character target

124.3 Example 1

The Smooth Time controls how fast a Character animation blends into another when reacting to external factors. A

value of 0 makes the Character react instantly whereas a value of 0.5 takes half a second to completely blend in. A

value between 0.2 and 0.4 usually provide the best results, though it depends on the look and feel the creator wants

to achieve.

124.4 Keywords

Fade Realistic Old School Reaction

Characters » Animation » Change Smooth Time

Page 218

125 Change State Weight

125.1 Description

Changes the weight of the State over time at the specified layer

125.2 Parameters

Name Description

Character The character that plays the animation state

Layer Slot number in which the animation state is allocated

Weight The targeted opacity of the animation

Transition The duration of the transition, in seconds

125.3 Keywords

Characters Animation Blend State Opacity

Characters » Animation » Change State Weight

Page 219

126 Enter State

126.1 Description

Makes a Character start an animation State

126.2 Parameters

Name Description

Character The character that plays the animation state

State The animation data necessary to play a state

Layer Slot number in which the animation state is allocated

Blend Mode Additively adds the new animation on top of the rest or overrides any lower layer animations

Delay Amount of seconds to wait before the animation starts to play

Speed Speed coefficient at which the animation plays

Weight The opacity of the animation that plays. Between 0 and 1

Transition The amount of seconds the animation takes to blend in

126.3 Keywords

Characters Animation Animate State Play

Characters » Animation » Enter State

Page 220

127 Play Gesture

127.1 Description

Plays an Animation Clip on a Character once

127.2 Parameters

Name Description

Character The character that plays the animation

Animation Clip The Animation Clip that is played

Avatar Mask (Optional) Allows to play the animation on specific body parts of the Character

Blend Mode Additively adds the new animation on top of the rest or overrides any lower layer animations

Delay Amount of seconds to wait before the animation starts to play

Speed Speed coefficient at which the animation plays. 1 means normal speed

Transition In The amount of seconds the animation takes to blend in

Transition Out The amount of seconds the animation takes to blend out

Wait To Complete If true this Instruction waits until the animation is complete

127.3 Keywords

Characters Animation Animate Gesture Play

Characters » Animation » Play Gesture

Page 221

128 Stop Gestures

128.1 Description

Stops any animation Gestures playing on the Character

128.2 Parameters

Name Description

Character The character that plays animation Gestures

Delay Amount of seconds to wait before the animation starts to blend out

Transition The amount of seconds the animation takes to blend out

128.3 Keywords

Characters Animation Animate Gesture Play

Characters » Animation » Stop Gesture

Page 222

129 Stop State

129.1 Description

Stops an animation State from a Character

129.2 Parameters

Name Description

Character The character that stops its animation State

Layer Slot number from which the state is removed

Delay Amount of seconds to wait before the animation stops playing

Transition The amount of seconds the animation takes to blend out

129.3 Keywords

Characters Animation Animate State Exit Stop

Characters » Animation » Stop State

Page 223

I.IV.I.I.V.II Busy

Page 224

130 Busy

130.1 Instructions

Set Available

Set Busy

Page 225

131 Set Available

131.1 Description

Sets the Available state of a Character's Limbs

131.2 Parameters

Name Description

Character The Character game object

Limbs The Limbs that are changed to Available

131.3 Keywords

Characters Busy Occupied Using

Characters » Busy » Set Available

Page 226

132 Set Busy

132.1 Description

Sets the Busy state of a Character's Limbs

132.2 Parameters

Name Description

Character The Character game object

Limbs The Limbs that are changed to Busy

132.3 Keywords

Characters Busy Occupied Using

Characters » Busy » Set Busy

Page 227

I.IV.I.I.V.III Combat

Page 228

133 Combat

133.1 Sub Categories

Invincibility

Poise

Targeting

Page 229

I.IV.I.I.V.IV Invincibility

Page 230

134 Invincibility

134.1 Instructions

Set Invincible

Page 231

135 Set Invincible

135.1 Description

Changes the Invincibility state of a Character

135.2 Parameters

Name Description

Character The Character that attempts to change its invincibility

Duration The duration of the invincibility

Wait Until Complete Whether to wait until the invincibility wears off

135.3 Keywords

Character Combat Invincibility

Characters » Combat » Invincibility » Set Invincible

Page 232

I.IV.I.I.V.V Poise

Page 233

136 Poise

136.1 Instructions

Set Poise

Page 234

137 Set Poise

137.1 Description

Changes the current Poise value of a Character

137.2 Parameters

Name Description

Character The Character that attempts to change its Poise value

Poise The new Poise value

137.3 Keywords

Character Combat

Characters » Combat » Poise » Set Poise

Page 235

I.IV.I.I.V.VI Targeting

Page 236

138 Targeting

138.1 Instructions

Add Target Candidate

Clear Target

Cycle Closest Target

Cycle Direction Target

Cycle Next Target

Cycle Previous Target

Remove Target Candidate

Set Target

Page 237

139 Add Target Candidate

139.1 Description

Adds a new candidate target for the specified character

139.2 Parameters

Name Description

Character The Character that attempts to change its candidate target

Target The new target candidate game object by the character

139.3 Keywords

Character Combat Focus Pick

Characters » Combat » Targeting » Add Target Candidate

Page 238

140 Clear Target

140.1 Description

Clears the targeted game object by the specified Character

140.2 Parameters

Name Description

Character The Character that attempts to change its target

140.3 Keywords

Character Combat Focus Pick

Characters » Combat » Targeting » Clear Target

Page 239

141 Cycle Closest Target

141.1 Description

Cycles to the closest candidate target to the character from the Targets list

141.2 Parameters

Name Description

Character The Character that attempts to change its candidate target

141.3 Keywords

Character Combat Focus Pick Candidate Targets

Characters » Combat » Targeting » Cycle Closest Target

Page 240

142 Cycle Direction Target

142.1 Description

Cycles to the visually closest target candidate from the Targets list and camera

142.2 Parameters

Name Description

Character The Character that attempts to change its candidate target

Camera The point of view from which the direction is calculated

Direction The local space direction (only [X,Y] components are used)

142.3 Keywords

Character Combat Focus Pick Candidate Targets

Characters » Combat » Targeting » Cycle Direction Target

Page 241

143 Cycle Next Target

143.1 Description

Cycles to the next candidate target from the Targets list

143.2 Parameters

Name Description

Character The Character that attempts to change its candidate target

143.3 Keywords

Character Combat Focus Pick Candidate Targets

Characters » Combat » Targeting » Cycle Next Target

Page 242

144 Cycle Previous Target

144.1 Description

Cycles to the previous candidate target from the Targets list

144.2 Parameters

Name Description

Character The Character that attempts to change its candidate target

144.3 Keywords

Character Combat Focus Pick Candidate Targets

Characters » Combat » Targeting » Cycle Previous Target

Page 243

145 Remove Target Candidate

145.1 Description

Removes a new candidate target for the specified character

145.2 Parameters

Name Description

Character The Character that attempts to change its target candidate

Target The target candidate to remove by the character

145.3 Keywords

Character Combat Focus Pick

Characters » Combat » Targeting » Remove Target Candidate

Page 244

146 Set Target

146.1 Description

Changes the targeted game object by the specified Character

146.2 Parameters

Name Description

Character The Character that attempts to change its target

Target The new targeted game object by the character

146.3 Keywords

Character Combat Focus Pick

Characters » Combat » Targeting » Set Target

Page 245

I.IV.I.I.V.VII Footsteps

Page 246

147 Footsteps

147.1 Instructions

Change Footstep Sounds

Play Footstep

Page 247

148 Change Footstep Sounds

148.1 Description

Changes the sound table that links textures with footstep sounds

148.2 Parameters

Name Description

Character The character that plays animation Gestures

Footsteps The sound table asset that contains information about how and when footstep sounds play

148.3 Keywords

Character Foot Step Stomp Foliage Audio Run Walk Move

Characters » Footsteps » Change Footstep Sounds

Page 248

149 Play Footstep

149.1 Description

Plays a Footstep sound from a Material Sound asset

149.2 Parameters

Name Description

Character The character target

Material Sound The material sound asset

149.3 Keywords

Step Foot Impact Land Sound

Characters » Footsteps » Play Footstep

Page 249

I.IV.I.I.V.VIII Ik

Page 250

150 Ik

150.1 Instructions

Active Feet Ik

Active Lean Ik

Active Look Ik

Clear Looking Around

Start Looking At

Stop Looking At

Page 251

151 Active Feet IK

151.1 Description

Changes the active state of the Character Feet IK

151.2 Parameters

Name Description

Character The character target

Active Whether the IK system is active or not

151.3 Keywords

Inverse Kinematics IK

Characters » IK » Active Feet IK

Page 252

152 Active Lean IK

152.1 Description

Changes the active state of the Character Lean IK

152.2 Parameters

Name Description

Character The character target

Active Whether the IK system is active or not

152.3 Keywords

Inverse Kinematics IK

Characters » IK » Active Lean IK

Page 253

153 Active Look IK

153.1 Description

Changes the active state of the Character Look IK

153.2 Parameters

Name Description

Character The character target

Active Whether the IK system is active or not

153.3 Keywords

Inverse Kinematics IK

Characters » IK » Active Look IK

Page 254

154 Clear Looking Around

154.1 Description

Stops looking at any target that isn't in a Hotspot (priority zero)

154.2 Parameters

Name Description

Character The character target

154.3 Keywords

Inverse Kinematics IK

Characters » IK » Clear Looking Around

Page 255

155 Start Looking At

155.1 Description

Starts looking at a target using the Look At IK system

155.2 Parameters

Name Description

Character The character target

Target The targeted Transform to look at

Layer The priority of this IK over other Look At attempts

155.3 Keywords

Inverse Kinematics IK

Characters » IK » Start Looking At

Page 256

156 Stop Looking At

156.1 Description

Stops looking at a target using the Look At IK system

156.2 Parameters

Name Description

Character The character target

Target The targeted Transform to look at

Layer The priority of this IK over other Look At attempts

156.3 Keywords

Inverse Kinematics IK

Characters » IK » Stop Looking At

Page 257

I.IV.I.I.V.IX Interaction

Page 258

157 Interaction

157.1 Instructions

Interact

Page 259

158 Interact

158.1 Description

Changes how the Player Character reacts to input commands

158.2 Parameters

Name Description

Character The Character that attempts to interact

158.3 Keywords

Character Button Pick Do Use Pull Press Push Talk

Characters » Interaction » Interact

Page 260

I.IV.I.I.V.X Navigation

Page 261

159 Navigation

159.1 Instructions

Cancel Dash

Dash

Jump

Move Direction

Move To

Set Character Driver

Set Character Rotation

Start Following

Stop Following

Stop Move

Teleport

Page 262

160 Cancel Dash

160.1 Description

Cancels any existing Dash on the chosen Character

160.2 Parameters

Name Description

Character The game object with the Character target

160.3 Keywords

Leap Blink Roll Flash Character Player

Characters » Navigation » Cancel Dash

Page 263

161 Dash

161.1 Description

Moves the Character in the chosen direction for a brief period of time

161.2 Parameters

Name Description

Direction Vector oriented towards the desired direction

Velocity Velocity the Character moves throughout the whole movement

Duration Defines the duration it takes to move forward at a constant velocity

Wait to Finish If true this Instruction waits until the dash is completed

Mode Whether to use Cardinal Animations (4 clips for each direction) or a single one

Animation Speed Determines the speed coefficient applied to the animation played

Transition In The time it takes to blend into the animation

Transition Out The time it takes to blend out of the animation

Character The game object with the Character target

161.3 Example 1

The Transition Out parameter is also used to determine the movement blend between the dash and the character's

intended movement. Higher values will make characters take longer to regain control after dashing

161.4 Keywords

Leap Blink Roll Flash Character Player

Characters » Navigation » Dash

Page 264

162 Jump

162.1 Description

Instructs the Character to jump

162.2 Parameters

Name Description

Character The game object with the Character target

162.3 Keywords

Hop Leap Reach Character Player

Characters » Navigation » Jump

Page 265

163 Move Direction

163.1 Description

Attempts to move the Character towards the specified direction

163.2 Parameters

Name Description

Direction The the direction to move towards

Priority Indicates the priority of this command against others

Character The game object with the Character target

163.3 Keywords

Constant Walk Run To Vector Character Player

Characters » Navigation » Move Direction

Page 266

164 Move To

164.1 Description

Instructs the Character to move to a new location

164.2 Parameters

Name Description

Location The position and rotation of the destination

Stop Distance Distance to the destination that the Character considers it has reached the target

Cancel on Fail Stops executing the rest of Instructions if the path has been obstructed

On Fail A list of Instructions executed when it can't reach the destination

Character The game object with the Character target

164.3 Example 1

The Stop Distance field is useful if you want [Character A] to approach another [Character B]. With a Stop Distance of

0, [Character A] tries to occupy the same space as the other one, bumping into it. Having a Stop Distance value of 2

allows [Character A] to stop 2 units away from [Character B]'s position

164.4 Keywords

Walk Run Position Location Destination Character Player

Characters » Navigation » Move To

Page 267

165 Set Character Driver

165.1 Description

Changes the driver behavior of the Character

165.2 Parameters

Name Description

Character The Character that changes its Driver behavior

Driver The Driver behavior that decides how the Character moves

165.3 Keywords

Character Drive Controller Navmesh Agent Rigidbody

Characters » Navigation » Set Character Driver

Page 268

166 Set Character Rotation

166.1 Description

Changes the rotation behavior of the Character

166.2 Parameters

Name Description

Character The Character that changes its Rotation behavior

Rotation The Rotation behavior that decides where the Character faces

166.3 Keywords

Character Face Look Direction Pivot Lock

Characters » Navigation » Set Character Rotation

Page 269

167 Start Following

167.1 Description

Instructs a Character to follow another game object

167.2 Parameters

Name Description

Target The target game object to follow

Min Distance Distance from the Target the Character aims to move when approaching the Target

Max Distance Maximum distance to the Target the Character leaves before attempting to move closer

Character The game object with the Character target

167.3 Keywords

Lead Pursue Chase Walk Run Position Location Destination Character Player

Characters » Navigation » Start Following

Page 270

168 Stop Following

168.1 Description

Instructs a Character to stop following a game object

168.2 Parameters

Name Description

Character The game object with the Character target

168.3 Keywords

Cancel Lead Pursue Chase Character Player

Characters » Navigation » Stop Following

Page 271

169 Stop Move

169.1 Description

Attempts to stop the character from moving

169.2 Parameters

Name Description

Priority Indicates the priority of this command against others

Character The game object with the Character target

169.3 Keywords

Constant Walk Run To Vector Character Player

Characters » Navigation » Stop Move

Page 272

170 Teleport

170.1 Description

Instantaneously moves a Character from its current position to a new one

170.2 Parameters

Name Description

Location The position and/or rotation where the Character is teleported

Character The game object with the Character target

170.3 Keywords

Change Position Location Respawn Spawn Character Player

Characters » Navigation » Teleport

Page 273

I.IV.I.I.V.XI Player

Page 274

171 Player

171.1 Instructions

Change Player

Set Player Input

Page 275

172 Change Player

172.1 Description

Changes the Character identified as the Player

172.2 Parameters

Name Description

Character The Character becomes the new Player character

172.3 Keywords

Character Is Control

Characters » Player » Change Player

Page 276

173 Set Player Input

173.1 Description

Changes how the Player Character reacts to input commands

173.2 Parameters

Name Description

Character The Character that changes its Player Input behavior

Input The new input method that the Character starts to listen

173.3 Keywords

Character Button Control Keyboard Mouse Gamepad Joystick

Characters » Player » Set Player Input

Page 277

I.IV.I.I.V.XII Properties

Page 278

174 Properties

174.1 Instructions

Axonometry

Can Collide

Can Jump

Change Angular Speed

Change Gravity

Change Height

Change Jump Force

Change Mass

Change Movement Speed

Change Radius

Change Terminal Velocity

Change Time Mode

Is Controllable

Kill Character

Mannequin Position

Mannequin Rotation

Mannequin Scale

Reset Vertical Velocity

Revive Character

Page 279

175 Change Axonometry

175.1 Description

Changes the Character's Axonometry value

175.2 Parameters

Name Description

Axonometry The new Axonometry value

Character The game object with the Character target

175.3 Keywords

Isometric Side Scroll

Characters » Properties » Axonometry

Page 280

176 Can Collide

176.1 Description

Changes whether the Character can collide with other objects or not

176.2 Parameters

Name Description

Character The character target

Can Collide Whether the character collides with other physic objects

Characters » Properties » Can Collide

Page 281

177 Can Jump

177.1 Description

Changes whether the Character is allowed to jump or not

177.2 Parameters

Name Description

Character The character target

Can Jump Whether the character is allowed to jump or not

177.3 Keywords

Hop Elevate

Characters » Properties » Can Jump

Page 282

178 Change Angular Speed

178.1 Description

Changes the Character's angular speed over time

178.2 Parameters

Name Description

Angular Speed The target Angular Speed value for the Character, measured in degrees per second

Duration How long it takes to perform the transition

Easing The change rate of the parameter over time

Wait to Complete Whether to wait until the transition is finished

Character The game object with the Character target

178.3 Keywords

Rotation Euler Direction Face Look

Characters » Properties » Change Angular Speed

Page 283

179 Change Gravity

179.1 Description

Changes the Character's gravity over time

179.2 Parameters

Name Description

Mode Whether the upwards, downwards or both Gravity values are changed

Gravity The target Gravity value for the Character

Duration How long it takes to perform the transition

Easing The change rate of the parameter over time

Wait to Complete Whether to wait until the transition is finished

Character The game object with the Character target

179.3 Keywords

Space

Characters » Properties » Change Gravity

Page 284

180 Change Height

180.1 Description

Changes the Character's height over time

180.2 Parameters

Name Description

Height The target Height value for the Character

Duration How long it takes to perform the transition

Easing The change rate of the parameter over time

Wait to Complete Whether to wait until the transition is finished

Character The game object with the Character target

180.3 Keywords

Length

Characters » Properties » Change Height

Page 285

181 Change Jump Force

181.1 Description

Changes the Character's jump force over time

181.2 Parameters

Name Description

Jump Force The target Jump Force value for the Character

Duration How long it will take to perform the transition

Easing The change rate of the parameter over time

Wait to Complete Whether to wait until the transition is finished

Character The game object with the Character target

181.3 Keywords

Hop Build Wind Fly

Characters » Properties » Change Jump Force

Page 286

182 Change Mass

182.1 Description

Changes the Character's mass over time

182.2 Parameters

Name Description

Mass The target Mass value for the Character

Duration How long it takes to perform the transition

Easing The change rate of the parameter over time

Wait to Complete Whether to wait until the transition is finished

Character The game object with the Character target

182.3 Keywords

Weight

Characters » Properties » Change Mass

Page 287

183 Change Movement Speed

183.1 Description

Changes the Character's maximum speed over time

183.2 Parameters

Name Description

Speed The target movement Speed value for the Character

Duration How long it takes to perform the transition

Easing The change rate of the parameter over time

Wait to Complete Whether to wait until the transition is finished

Character The game object with the Character target

183.3 Keywords

Linear Walk Run Jog Sprint Velocity Throttle

Characters » Properties » Change Movement Speed

Page 288

184 Change Radius

184.1 Description

Changes the Character's radius over time

184.2 Parameters

Name Description

Radius The target Radius value for the Character

Duration How long it takes to perform the transition

Easing The change rate of the parameter over time

Wait to Complete Whether to wait until the transition is finished

Character The game object with the Character target

184.3 Keywords

Diameter Space Fat Thin

Characters » Properties » Change Radius

Page 289

185 Change Terminal Velocity

185.1 Description

Changes the Character's maximum fall-speed over time. Useful for gliding

185.2 Parameters

Name Description

Terminal Velocity The target Terminal Velocity value for the Character

Duration How long it takes to perform the transition

Easing The change rate of the parameter over time

Wait to Complete Whether to wait until the transition is finished

Character The game object with the Character target

185.3 Keywords

Fall Glide Parachute Height

Characters » Properties » Change Terminal Velocity

Page 290

186 Change Time Mode

186.1 Description

Changes the Character's Time Mode

186.2 Parameters

Name Description

Time Mode The target Time Mode for the Character

Character The game object with the Character target

186.3 Keywords

Scale Game

Characters » Properties » Change Time Mode

Page 291

187 Is Controllable

187.1 Description

Changes whether the Character (Player) responds using input commands

187.2 Parameters

Name Description

Character The character target

Is Controllable Whether the character responds to input commands

Characters » Properties » Is Controllable

Page 292

188 Kill Character

188.1 Description

Changes the state of the Character to dead

188.2 Parameters

Name Description

Character The character target

188.3 Keywords

Dead Die Murder

Characters » Properties » Kill Character

Page 293

189 Mannequin Position

189.1 Description

Changes the local position of the Mannequin object within the Character

189.2 Parameters

Name Description

Character The character target

Position The Local Position of the Mannequin

189.3 Keywords

Location Model Local Change Set Root

Characters » Properties » Mannequin Position

Page 294

190 Mannequin Rotation

190.1 Description

Changes the local rotation of the Mannequin object within the Character

190.2 Parameters

Name Description

Character The character target

Rotation The Local Rotation of the Mannequin

190.3 Keywords

Location Model Local

Characters » Properties » Mannequin Rotation

Page 295

191 Mannequin Scale

191.1 Description

Changes the local scale of the Mannequin object within the Character

191.2 Parameters

Name Description

Character The character target

Scale The Local Scale of the Mannequin

191.3 Keywords

Location Model Local

Characters » Properties » Mannequin Scale

Page 296

192 Reset Vertical Velocity

192.1 Description

Changes the Character's vertical velocity to zero

192.2 Parameters

Name Description

Character The game object with the Character target

192.3 Keywords

Fall Speed

Characters » Properties » Reset Vertical Velocity

Page 297

193 Revive Character

193.1 Description

Changes the state of the Character to alive

193.2 Parameters

Name Description

Character The character target

193.3 Keywords

Respawn Alive Resurrect

Characters » Properties » Revive Character

Page 298

I.IV.I.I.V.XIII Ragdoll

Page 299

194 Ragdoll

194.1 Instructions

Recover Ragdoll

Start Ragdoll

Page 300

195 Recover from Ragdoll

195.1 Description

Recovers a Character from the Ragdoll state and stands up

195.2 Parameters

Name Description

Character The Character game object that recovers from the Ragdoll state

195.3 Keywords

Characters Ragdoll Recover Stand

Characters » Ragdoll » Recover Ragdoll

Page 301

196 Start Ragdoll

196.1 Description

Makes a Character enter a ragdoll state

196.2 Parameters

Name Description

Character The Character game object that changes to a Ragdoll state

196.3 Keywords

Characters Ragdoll Dead Kill Die

Characters » Ragdoll » Start Ragdoll

Page 302

I.IV.I.I.V.XIV Visuals

Page 303

197 Visuals

197.1 Instructions

Attach Prop

Change Model

Drop Prop

Put On Skin Mesh

Remove Prop

Take Off Skin Mesh

Page 304

198 Attach Prop

198.1 Description

Attaches a prefab or instance Prop onto a Character's bone

198.2 Parameters

Name Description

Character The character target

Type Whether to attach the prop as a prefab or instance

Prop The prefab or instance object that is attached to the character

Bone Which bone the prop is attached to

Position Local offset from which the prop is distanced from the bone

Rotation Local offset from which the prop is rotated from the bone

198.3 Keywords

Characters Add Grab Draw Pull Take Object

Characters » Visuals » Attach Prop

Page 305

199 Change Model

199.1 Description

Changes the Character current model

199.2 Parameters

Name Description

Character The character target

Model The prefab object that replaces the current Character model

Skeleton Optional parameter that replaces the configuration of volumes

Footstep Sounds Optional parameter that replaces the current Footstep sounds

Offset A local offset from the center of the Character

199.3 Keywords

Characters Model

Characters » Visuals » Change Model

Page 306

200 Drop Prop

200.1 Description

Drops a prefab or instance Prop (if any) from a Character

200.2 Parameters

Name Description

Character The character target

Type Whether to drop the prop form a prefab or as its instance

Prop The prefab or instance object prop that is dropped from the character

200.3 Keywords

Characters Detach Let Sheathe Put Holster Object

Characters » Visuals » Drop Prop

Page 307

201 Put on Skin Mesh

201.1 Description

Creates a new instance of a skin mesh renderer and puts it on a Character

201.2 Parameters

Name Description

Prefab Game Object reference with a Skin Mesh Renderer that is instantiated

On Character Target Character that uses its armature to wear the skin mesh

201.3 Keywords

Renderer New Game Object Armature

Characters » Visuals » Put on Skin Mesh

Page 308

202 Remove Prop

202.1 Description

Removes a prefab or instance Prop (if any) from a Character

202.2 Parameters

Name Description

Character The character target

Type Whether to remove the prop form a prefab or as its instance

Prop The prefab or instance object prop that is removed from the character

202.3 Keywords

Characters Detach Let Sheathe Put Holster Object

Characters » Visuals » Remove Prop

Page 309

203 Take off Skin Mesh

203.1 Description

Removes an instance of a Skin Mesh from a Character

203.2 Parameters

Name Description

Prefab Game Object reference with a Skin Mesh Renderer that is removed

From Character Target Character that uses its armature to wear the skin mesh

203.3 Keywords

Renderer Game Object Armature

Characters » Visuals » Take off Skin Mesh

Page 310

I.IV.I.I.VI DEBUG

Page 311

204 Debug

204.1 Sub Categories

Console

Gizmos

204.2 Instructions

Beep

Clear Console

Comment

Frame Step

Log Number

Log Text

Pause Editor

Toggle Console

Page 312

205 Beep

205.1 Description

Plays the Operative System default 'beep' sound. This is intended for debugging purposes and doesn't do anything

on a runtime application

205.2 Keywords

Debug

Debug » Beep

Page 313

206 Clear Console

206.1 Description

Clears the console in a development or Editor build

206.2 Keywords

Debug Terminal

Debug » Clear Console

Page 314

207 Comment

207.1 Description

Displays an explanation or annotation in the instructions list. It is intended to make instructions easier for humans to

understand

207.2 Parameters

Name Description

Text The text of the comment

207.3 Keywords

Debug Note Annotation Explanation

Debug » Comment

Page 315

208 Frame Step

208.1 Description

Performs a single frame step. It requires the Editor to be paused

208.2 Keywords

Debug

Debug » Frame Step

Page 316

209 Log Number

209.1 Description

Prints a text from a numeric source to the Unity Console

209.2 Parameters

Name Description

Number The number to log

209.3 Keywords

Debug Log Print Show Display Test Float Double Decimal Integer Message

Debug » Log Number

Page 317

210 Log Text

210.1 Description

Prints a message to the Unity Console

210.2 Parameters

Name Description

Message The text message to log

210.3 Keywords

Debug Log Print Show Display Name Test Message String

Debug » Log Text

Page 318

211 Pause Editor

211.1 Description

Pauses the Editor. This has no effect on standalone applications

211.2 Keywords

Debug Break Pause Stop

Debug » Pause Editor

Page 319

212 Toggle Console

212.1 Description

Shows or hides the Console in a standalone development build

212.2 Keywords

Debug Terminal

Debug » Toggle Console

Page 320

I.IV.I.I.VI.I Console

Page 321

213 Console

213.1 Instructions

Console Close

Console Command

Console Open

Console Text

Console Toggle

Page 322

214 Console Close

214.1 Description

Closes the Runtime Console

214.2 Keywords

Terminal Log Debug

Debug » Console » Console Close

Page 323

215 Console Command

215.1 Description

Submits a Command onto the Runtime Console

215.2 Parameters

Name Description

Command The command message to submit

215.3 Keywords

Debug Log Terminal Submit Send Execute Run

Debug » Console » Console Command

Page 324

216 Console Open

216.1 Description

Opens the Runtime Console

216.2 Keywords

Terminal Log Debug

Debug » Console » Console Open

Page 325

217 Console Text

217.1 Description

Prints a message to the Runtime Console

217.2 Parameters

Name Description

Message The text message to log

217.3 Keywords

Debug Log Print Show Display Name Test Message String Terminal

Debug » Console » Console Text

Page 326

218 Console Toggle

218.1 Description

Toggles the Runtime Console

218.2 Keywords

Terminal Log Debug

Debug » Console » Console Toggle

Page 327

I.IV.I.I.VI.II Gizmos

Page 328

219 Gizmos

219.1 Instructions

Gizmo Line

Page 329

220 Gizmo Line

220.1 Description

Displays a line between two points for a certain time

220.2 Keywords

Debug Gizmo Draw

Debug » Gizmos » Gizmo Line

Page 330

I.IV.I.I.VII GAME OBJECTS

Page 331

221 Game Objects

221.1 Sub Categories

Components

Pooling

221.2 Instructions

Change Layer

Change Name

Change Tag

Destroy

Instantiate

Set Active

Set Game Object

Toggle Active

Page 332

222 Change Layer

222.1 Description

Changes the layer value of a game object

222.2 Parameters

Name Description

Layer The layer where the game object belongs to

Children Too Whether to also change the layer of the game object's children or not

Game Object Target game object

222.3 Keywords

MonoBehaviour Behaviour Script

Game Objects » Change Layer

Page 333

223 Change Name

223.1 Description

Changes the name of a game object

223.2 Parameters

Name Description

Name The new name assigned to the game object

Game Object Target game object

223.3 Keywords

MonoBehaviour Behaviour Script

Game Objects » Change Name

Page 334

224 Change Tag

224.1 Description

Changes the Tag of a game object

224.2 Parameters

Name Description

Tag The tag value which the game object belongs to

Game Object Target game object

224.3 Keywords

MonoBehaviour Behaviour Script

Game Objects » Change Tag

Page 335

225 Destroy

225.1 Description

Destroys a game object scene instance

225.2 Parameters

Name Description

Game Object Target game object

225.3 Keywords

Remove Delete Flush MonoBehaviour Behaviour Script

Game Objects » Destroy

Page 336

226 Instantiate

226.1 Description

Creates a new instance of a referenced game object

226.2 Parameters

Name Description

Game Object Game Object reference that is instantiated

Position The position of the new game object instance

Rotation The rotation of the new game object instance

Save Optional value where the newly instantiated game object is stored

226.3 Keywords

Create New Game Object

Game Objects » Instantiate

Page 337

227 Set Active

227.1 Description

Changes the state of a game object to active or inactive

227.2 Parameters

Name Description

Game Object Target game object

227.3 Keywords

Activate Deactivate Enable Disable MonoBehaviour Behaviour Script

Game Objects » Set Active

Page 338

228 Set Game Object

228.1 Description

Sets a game object value equal to another one

228.2 Parameters

Name Description

Set Where the value is set

From The value that is set

228.3 Keywords

Change Instance Variable Asset

Game Objects » Set Game Object

Page 339

229 Toggle Active

229.1 Description

Toggles the state of a game object to active or to inactive

229.2 Parameters

Name Description

Game Object Target game object

229.3 Keywords

Activate Deactivate Enable Disable Switch Swap MonoBehaviour Behaviour Script

Game Objects » Toggle Active

Page 340

I.IV.I.I.VII.I Components

Page 341

230 Components

230.1 Instructions

Add Component

Disable Collider

Disable Component

Disable Renderer

Enable Collider

Enable Component

Enable Renderer

Remove Component

Page 342

231 Add Component

231.1 Description

Adds a component class to the game object

231.2 Parameters

Name Description

Game Object Target game object

231.3 Keywords

Add Append MonoBehaviour Behaviour Script

Game Objects » Components » Add Component

Page 343

232 Disable Collider

232.1 Description

Disables a Collider component from the game object

232.2 Parameters

Name Description

Game Object Target game object

232.3 Keywords

Inactive Turn Off Box Sphere Capsule Mesh

Game Objects » Components » Disable Collider

Page 344

233 Disable Component

233.1 Description

Disables a component class from the game object

233.2 Parameters

Name Description

Game Object Target game object

233.3 Keywords

Deactivate Turn Off MonoBehaviour Behaviour Script

Game Objects » Components » Disable Component

Page 345

234 Disable Renderer

234.1 Description

Disables a Renderer component from the game object

234.2 Parameters

Name Description

Game Object Target game object

234.3 Keywords

Inactive Turn Off Mesh

Game Objects » Components » Disable Renderer

Page 346

235 Enable Collider

235.1 Description

Enables a Collider component from the game object

235.2 Parameters

Name Description

Game Object Target game object

235.3 Keywords

Active Turn On Box Sphere Capsule Mesh

Game Objects » Components » Enable Collider

Page 347

236 Enable Component

236.1 Description

Enables a component class from the game object

236.2 Parameters

Name Description

Game Object Target game object

236.3 Keywords

Active Turn On MonoBehaviour Behaviour Script

Game Objects » Components » Enable Component

Page 348

237 Enable Renderer

237.1 Description

Enables a Renderer component from the game object

237.2 Parameters

Name Description

Game Object Target game object

237.3 Keywords

Inactive Turn Off Mesh

Game Objects » Components » Enable Renderer

Page 349

238 Remove Component

238.1 Description

Removes an existing component from the game object

238.2 Parameters

Name Description

Game Object Target game object

238.3 Keywords

Delete Destroy MonoBehaviour Behaviour Script

Game Objects » Components » Remove Component

Page 350

I.IV.I.I.VII.II Pooling

Page 351

239 Pooling

239.1 Instructions

Pool Destroy

Pool Prewarm

Page 352

240 Pool Destroy

240.1 Description

Destroys an existing game object pool

240.2 Parameters

Name Description

Game Object The Game Object reference is used as the template for the pool

240.3 Example 1

Use this Instruction to dispose those pools that have been pre-warmed. Pools created at runtime are automatically

disposed when their scene is unloaded.

240.4 Keywords

Dispose Destroy Delete Game Object

Game Objects » Pooling » Pool Destroy

Page 353

241 Pool Prewarm

241.1 Description

Creates or makes sure an existing game object pool has enough instances

241.2 Parameters

Name Description

Game Object The Game Object reference is used as the template for the pool

Pool Size The size of the pool of game objects

241.3 Example 1

Pre-warming a Pool moves it to the DontDestroyOnLoad scene. This means its contents will never be destroyed even

after loading new scenes. To delete a pre-warmed pool use the Pool Destroy instruction.

241.4 Keywords

Create New Initialize Game Object

Game Objects » Pooling » Pool Prewarm

Page 354

I.IV.I.I.VIII INPUT

Page 355

242 Input

242.1 Instructions

Disable Input Action

Disable Input Map

Display Touchstick Left

Display Touchstick Right

Enable Input Action

Enable Input Map

Page 356

243 Disable Input Action

243.1 Description

Disables an Input Action asset which stops it from reading user input

243.2 Parameters

Name Description

Input Asset The Input Asset reference

243.3 Keywords

Deactivate Inactive

Input » Disable Input Action

Page 357

244 Disable Input Map

244.1 Description

Disables an Input Action asset with a Map value which stops reading user input

244.2 Parameters

Name Description

Input Asset The Input Asset reference

244.3 Keywords

Deactivate Inactive

Input » Disable Input Map

Page 358

245 Display Touchstick Left

245.1 Description

Shows or hides the default Touchstick on the left side

245.2 Parameters

Name Description

Show Shows the touchstick if ticked. Hides the touchstick otherwise

245.3 Keywords

Joystick

Input » Display Touchstick Left

Page 359

246 Display Touchstick Right

246.1 Description

Shows or hides the default Touchstick on the right side

246.2 Parameters

Name Description

Show Shows the touchstick if ticked. Hides the touchstick otherwise

246.3 Keywords

Joystick

Input » Display Touchstick Right

Page 360

247 Enable Input Action

247.1 Description

Enables an Input Action asset which allows it to start reading user input

247.2 Parameters

Name Description

Input Asset The Input Asset reference

247.3 Keywords

Activate Active Start

Input » Enable Input Action

Page 361

248 Enable Input Map

248.1 Description

Enables an Input Action asset with a Map value which allows reading user input

248.2 Parameters

Name Description

Input Asset The Input Asset reference

248.3 Keywords

Activate Active Start

Input » Enable Input Map

Page 362

I.IV.I.I.IX LIGHTS

Page 363

249 Lights

249.1 Instructions

Light Color

Light Intensity

Page 364

250 Light Color

250.1 Description

Smoothly changes the color of a Light component

250.2 Parameters

Name Description

Color The color the Light component starts emitting

Light The game object with a Light component

Duration How long it takes to perform the transition

Easing The change rate of the parameter over time

Wait to Complete Whether to wait until the transition is finished

250.3 Keywords

Colour Hue Mood RGB Light Light Spot Sun Point Strength Burn Dark

Lights » Light Color

Page 365

251 Light Intensity

251.1 Description

Smoothly changes the intensity of a Light component

251.2 Parameters

Name Description

Intensity The intensity change that the Light component undergoes

Light The game object with a Light component

Duration How long it takes to perform the transition

Easing The change rate of the parameter over time

Wait to Complete Whether to wait until the transition is finished

251.3 Keywords

Light Spot Sun Point Strength Burn Dark

Lights » Light Intensity

Page 366

I.IV.I.I.X MATH

Page 367

252 Math

252.1 Sub Categories

Arithmetic

Boolean

Geometry

Shading

Text

Page 368

I.IV.I.I.X.I Arithmetic

Page 369

253 Arithmetic

253.1 Instructions

Absolute Number

Add Numbers

Clamp Number

Cosine

Divide Numbers

Increment Number

Modulus Numbers

Multiply Numbers

Set Number

Sign Of Number

Sine

Subtract Numbers

Tangent

Page 370

254 Absolute Number

254.1 Description

Sets a value without its sign

254.2 Parameters

Name Description

Set Where the value is stored

Number The input value

254.3 Keywords

Change Float Integer Variable Sign Positive Modulus Magnitude

Math » Arithmetic » Absolute Number

Page 371

255 Add Numbers

255.1 Description

Add two values together

255.2 Parameters

Name Description

Set Where the resulting value is set

Value 1 The first operand of the arithmetic operation

Value 2 The second operand of the arithmetic operation

255.3 Keywords

Sum Plus Float Integer Variable

Math » Arithmetic » Add Numbers

Page 372

256 Clamp Number

256.1 Description

Clamps a value between a range defined by two others (inclusive)

256.2 Parameters

Name Description

Set Where the resulting value is set

Value The value that is clamped between two others

Minimum The smallest possible value

Maximum The largest possible value

256.3 Keywords

Min Max Negative Minus Float Integer Variable

Math » Arithmetic » Clamp Number

Page 373

257 Cosine

257.1 Description

Sets a value equal the Cosine of a number

257.2 Parameters

Name Description

Set Where the value is stored

Cosine The angle input in radians

257.3 Keywords

Change Float Integer Variable

Math » Arithmetic » Cosine

Page 374

258 Divide Numbers

258.1 Description

Performs a division between the first and the second values

258.2 Parameters

Name Description

Set Where the resulting value is set

Value 1 The first operand of the arithmetic operation

Value 2 The second operand of the arithmetic operation

258.3 Keywords

Fraction Float Integer Variable

Math » Arithmetic » Divide Numbers

Page 375

259 Increment Number

259.1 Description

Sets a value equal the sum of itself, plus another number

259.2 Parameters

Name Description

Set The value being incremented

Value The value to add

259.3 Keywords

Change Float Integer Variable

Math » Arithmetic » Increment Number

Page 376

260 Modulus Numbers

260.1 Description

Calculates the modulus between the first and the second value

260.2 Parameters

Name Description

Set Where the resulting value is set

Value 1 The first operand of the arithmetic operation

Value 2 The second operand of the arithmetic operation

260.3 Keywords

Fraction Float Integer Variable Module

Math » Arithmetic » Modulus Numbers

Page 377

261 Multiply Numbers

261.1 Description

Multiplies two values together

261.2 Parameters

Name Description

Set Where the resulting value is set

Value 1 The first operand of the arithmetic operation

Value 2 The second operand of the arithmetic operation

261.3 Keywords

Product Float Integer Variable

Math » Arithmetic » Multiply Numbers

Page 378

262 Set Number

262.1 Description

Sets a value equal to another value

262.2 Parameters

Name Description

Set Where the value is set

From The value that is set

262.3 Keywords

Change Float Integer Variable

Math » Arithmetic » Set Number

Page 379

263 Sign of Number

263.1 Description

Sets a value equal to -1 if the input number is negative. 1 otherwise

263.2 Parameters

Name Description

Set Where the value is stored

Number The input value

263.3 Keywords

Change Float Integer Variable Positive Negative

Math » Arithmetic » Sign of Number

Page 380

264 Sine

264.1 Description

Sets a value equal the Sine of a number

264.2 Parameters

Name Description

Set Where the value is stored

Sine The angle input in radians

264.3 Keywords

Change Float Integer Variable

Math » Arithmetic » Sine

Page 381

265 Subtract Numbers

265.1 Description

Subtracts the second value from the first one

265.2 Parameters

Name Description

Set Where the resulting value is set

Value 1 The first operand of the arithmetic operation

Value 2 The second operand of the arithmetic operation

265.3 Keywords

Rest Negative Minus Float Integer Variable

Math » Arithmetic » Subtract Numbers

Page 382

266 Tangent

266.1 Description

Sets a value equal the Tangent of a number

266.2 Parameters

Name Description

Set Where the value is stored

Tangent The angle input in radians

266.3 Keywords

Change Float Integer Variable

Math » Arithmetic » Tangent

Page 383

I.IV.I.I.X.II Boolean

Page 384

267 Boolean

267.1 Instructions

And Bool

Nand Bool

Nor Bool

Or Bool

Set Bool

Toggle Bool

Page 385

268 AND Bool

268.1 Description

Executes an AND operation between to values and saves the result

268.2 Parameters

Name Description

Set Where the resulting value is set

Value 1 The first operand of the boolean operation

Value 2 The second operand of the boolean operation

268.3 Keywords

Subtract Minus Variable Boolean

Math » Boolean » AND Bool

Page 386

269 NAND Bool

269.1 Description

Executes a NAND operation between to values and saves the result

269.2 Parameters

Name Description

Set Where the resulting value is set

Value 1 The first operand of the boolean operation

Value 2 The second operand of the boolean operation

269.3 Keywords

Not Negative Subtract Minus Variable Boolean

Math » Boolean » NAND Bool

Page 387

270 NOR Bool

270.1 Description

Executes a NOR operation between to values and saves the result

270.2 Parameters

Name Description

Set Where the resulting value is set

Value 1 The first operand of the boolean operation

Value 2 The second operand of the boolean operation

270.3 Keywords

Not Negative Sum Plus Variable Boolean

Math » Boolean » NOR Bool

Page 388

271 OR Bool

271.1 Description

Executes an OR operation between to values and saves the result

271.2 Parameters

Name Description

Set Where the resulting value is set

Value 1 The first operand of the boolean operation

Value 2 The second operand of the boolean operation

271.3 Keywords

Sum Plus Variable Boolean

Math » Boolean » OR Bool

Page 389

272 Set Bool

272.1 Description

Sets a boolean value equal to another value

272.2 Parameters

Name Description

Set Where the value is set

From The value that is set

272.3 Keywords

Change Boolean Variable

Math » Boolean » Set Bool

Page 390

273 Toggle Bool

273.1 Description

Toggles the value of a Boolean value

273.2 Parameters

Name Description

Set The boolean value that stores the result

From The boolean value that is toggled

273.3 Keywords

Change Boolean Variable Not Flip Switch

Math » Boolean » Toggle Bool

Page 391

I.IV.I.I.X.III Geometry

Page 392

274 Geometry

274.1 Instructions

Add Directions

Add Points

Clamp

Cross Product

Distance

Dot Product

Normalize

Project On Plane

Reflect On Plane

Remap Coordinates

Scale Product

Set Direction

Set Point

Set Vector X

Set Vector Y

Set Vector Z

Subtract Directions

Subtract Points

Transform To Local Direction

Transform To Local Point

Transform To World Direction

Transform To World Point

Uniform Scale

Page 393

275 Add Directions

275.1 Description

Adds two values that represent a direction in space and saves the result

275.2 Parameters

Name Description

Set Where the resulting value is set

Direction 1 The first operand of the geometric operation that represents a direction

Direction 2 The second operand of the geometric operation that represents a direction

275.3 Keywords

Sum Plus Position Location Variable

Math » Geometry » Add Directions

Page 394

276 Add Points

276.1 Description

Adds two values that represent a point in space and saves the result

276.2 Parameters

Name Description

Set Where the resulting value is set

Point 1 The first operand of the geometric operation that represents a point in space

Point 2 The second operand of the geometric operation that represents a point in space

276.3 Keywords

Sum Plus Position Location Variable

Math » Geometry » Add Points

Page 395

277 Clamp

277.1 Description

Clamps all components of a Vector3 between two values

277.2 Parameters

Name Description

Set Dynamic variable where the resulting value is set

Value The Vector3 value clamped between Minimum and Maximum

Minimum The minimum value

Maximum The maximum value

277.3 Keywords

Limit Vector3 Vector2 Constraint Variable

Math » Geometry » Clamp

Page 396

278 Cross Product

278.1 Description

Calculates the cross product of two direction values and saves the result

278.2 Parameters

Name Description

Set Where the resulting value is set

Direction 1 The first operand of the geometric operation that represents a direction

Direction 2 The second operand of the geometric operation that represents a direction

278.3 Keywords

Multiply Orthogonal Perpendicular Normal Position Location Variable

Math » Geometry » Cross Product

Page 397

279 Distance

279.1 Description

Calculates the distance between two points in space and saves the result

279.2 Parameters

Name Description

Set Where the resulting value is set

Point 1 The first operand of the geometric operation that represents a point in space

Point 2 The second operand of the geometric operation that represents a point in space

279.3 Keywords

Magnitude Position Location Variable

Math » Geometry » Distance

Page 398

280 Dot Product

280.1 Description

Calculates the dot product between two directions and saves the result

280.2 Parameters

Name Description

Set Where the resulting value is set

Direction 1 The first operand of the geometric operation that represents a direction

Direction 2 The second operand of the geometric operation that represents a direction

280.3 Keywords

Direction Parallel Perpendicular

Math » Geometry » Dot Product

Page 399

281 Normalize

281.1 Description

Makes the magnitude of a direction vector equal to 1

281.2 Parameters

Name Description

Set Dynamic variable where the resulting value is set

From The direction vector that is normalized

281.3 Keywords

Change Vector3 Vector2 Unit Magnitude Variable

Math » Geometry » Normalize

Page 400

282 Project on Plane

282.1 Description

Projects a direction on a plane defined by a normal vector and saves the result

282.2 Parameters

Name Description

Set Where the resulting value is set

Direction The direction vector that is projected on a plane

Plane Normal The plane represented by the direction of its normal vector

282.3 Keywords

Direction Surface Sway

Math » Geometry » Project on Plane

Page 401

283 Reflect on Plane

283.1 Description

Reflects a direction on a plane defined by a normal vector and saves the result

283.2 Parameters

Name Description

Set Where the resulting value is set

Direction The direction vector that is reflected on a plane

Plane Normal The plane represented by the direction of its normal vector

283.3 Keywords

Direction Bounce Ricochet Snell

Math » Geometry » Reflect on Plane

Page 402

284 Remap Coordinates

284.1 Description

Changes each of the components of a Vector3 value

284.2 Parameters

Name Description

Value The Vector3 value affected by the operation

X Where the X coordinate component is remapped

Y Where the Y coordinate component is remapped

Z Where the Z coordinate component is remapped

284.3 Keywords

Change Vector3 Vector2 Component Towards Look Variable Axis

Math » Geometry » Remap Coordinates

Page 403

285 Scale Product

285.1 Description

Multiplies two vectors component-wise

285.2 Parameters

Name Description

Set Where the resulting value is set

Direction 1 The first operand of the geometric operation that represents a direction

Direction 2 The second operand of the geometric operation that represents a direction

285.3 Keywords

Multiply Uniform Component Axis Position Location Variable

Math » Geometry » Scale Product

Page 404

286 Set Direction

286.1 Description

Changes the value of a Vector3 that represents a direction in space

286.2 Parameters

Name Description

Set Dynamic variable where the resulting value is set

From The value that is set

286.3 Keywords

Change Vector3 Vector2 Towards Look Variable

Math » Geometry » Set Direction

Page 405

287 Set Point

287.1 Description

Changes the value of a Vector3 that represents a position in space

287.2 Parameters

Name Description

Set Dynamic variable where the resulting value is set

From The value that is set

287.3 Keywords

Change Vector3 Vector2 Position Location Variable

Math » Geometry » Set Point

Page 406

288 Set Vector X

288.1 Description

Changes the X component of a vector

288.2 Parameters

Name Description

Set Where the resulting value is set

X The value that is changed for

288.3 Keywords

Change Component Axis

Math » Geometry » Set Vector X

Page 407

289 Set Vector Y

289.1 Description

Changes the Y component of a vector

289.2 Parameters

Name Description

Set Where the resulting value is set

Y The value that is changed for

289.3 Keywords

Change Component Axis

Math » Geometry » Set Vector Y

Page 408

290 Set Vector Z

290.1 Description

Changes the Z component of a vector

290.2 Parameters

Name Description

Set Where the resulting value is set

Z The value that is changed for

290.3 Keywords

Change Component Axis

Math » Geometry » Set Vector Z

Page 409

291 Subtract Directions

291.1 Description

Subtracts two values that represent a direction in space and saves the result

291.2 Parameters

Name Description

Set Where the resulting value is set

Direction 1 The first operand of the geometric operation that represents a direction

Direction 2 The second operand of the geometric operation that represents a direction

291.3 Keywords

Minus Rest Position Location Variable

Math » Geometry » Subtract Directions

Page 410

292 Subtract Points

292.1 Description

Subtracts two values that represent a point in space and saves the result

292.2 Parameters

Name Description

Set Where the resulting value is set

Point 1 The first operand of the geometric operation that represents a point in space

Point 2 The second operand of the geometric operation that represents a point in space

292.3 Keywords

Rest Minus Position Location Variable

Math » Geometry » Subtract Points

Page 411

293 Transform to Local Direction

293.1 Description

Transform the Direction from World to Local space

293.2 Parameters

Name Description

Set Where the resulting value is set

Transform The reference object to transform the coordinates

Direction The direction that changes its space mode

293.3 Keywords

Direction Local World Space Variable Inverse

Math » Geometry » Transform to Local Direction

Page 412

294 Transform to Local Point

294.1 Description

Transform the Point from World to Local space

294.2 Parameters

Name Description

Set Where the resulting value is set

Transform The reference object to transform the coordinates

Point The point that changes its space mode

294.3 Keywords

Location Position Local World Space Variable Inverse

Math » Geometry » Transform to Local Point

Page 413

295 Transform to World Direction

295.1 Description

Transform the Direction from Local to World space

295.2 Parameters

Name Description

Set Where the resulting value is set

Transform The reference object to transform the coordinates

Direction The direction that changes its space mode

295.3 Keywords

Direction Local World Space Variable

Math » Geometry » Transform to World Direction

Page 414

296 Transform to World Point

296.1 Description

Transform the Point from Local to World space

296.2 Parameters

Name Description

Set Where the resulting value is set

Transform The reference object to transform the coordinates

Point The point that changes its space mode

296.3 Keywords

Location Position Local World Space Variable

Math » Geometry » Transform to World Point

Page 415

297 Uniform Scale

297.1 Description

Multiplies each component of a vector with a decimal

297.2 Parameters

Name Description

Set Where the resulting value is set

Vector The first operand of the geometric operation that represents a direction

Value The second operand of the geometric operation that represents a decimal number

297.3 Keywords

Direction Homogeneous Multiply Product

Math » Geometry » Uniform Scale

Page 416

I.IV.I.I.X.IV Shading

Page 417

298 Shading

298.1 Instructions

Lerp Color

Lerp Lightness

Lerp Saturation

Set Color

Page 418

299 Lerp Color

299.1 Description

Linearly interpolates between to colors over time

299.2 Parameters

Name Description

Color 1 The starting Color value

Color 2 The targeted Color value

Duration How long it takes to perform the transition

Easing The change rate of the transition over time

Wait to Complete Whether to wait until the transition is finished or not

Set Where the resulting Color value is set

299.3 Keywords

Change Value Transition Shade Tint Hue Colour Color Paint Tone

Math » Shading » Lerp Color

Page 419

300 Lerp Lightness

300.1 Description

Linearly interpolates between to the desired lightness value over time

300.2 Parameters

Name Description

Lightness The targeted Lightness value (between 0 and 1)

Duration How long it takes to perform the transition

Easing The change rate of the transition over time

Wait to Complete Whether to wait until the transition is finished or not

Set Where the resulting Color value is set

300.3 Keywords

Change Value Transition Shade Tint Hue Colour Color Paint Tone

Math » Shading » Lerp Lightness

Page 420

301 Lerp Saturation

301.1 Description

Linearly interpolates between to the desired saturation value over time

301.2 Parameters

Name Description

Saturation The targeted Saturation value (between 0 and 1)

Duration How long it takes to perform the transition

Easing The change rate of the transition over time

Wait to Complete Whether to wait until the transition is finished or not

Set Where the resulting Color value is set

301.3 Keywords

Change Value Transition Shade Tint Hue Colour Color Paint Tone

Math » Shading » Lerp Saturation

Page 421

302 Set Color

302.1 Description

Sets the value of a Color

302.2 Parameters

Name Description

Color The Color value to set

Set Where the resulting Color value is set

302.3 Keywords

Change Value Shade Tint Hue Colour Color Paint Tone

Math » Shading » Set Color

Page 422

I.IV.I.I.X.V Text

Page 423

303 Text

303.1 Instructions

Join

Replace

Set Text

Substring

Page 424

304 Join

304.1 Description

Joins two string values and stores them

304.2 Parameters

Name Description

Text 1 The source of the first text

Text 2 The source of the second text

Set Where the resulting value is set

304.3 Keywords

Concat Concatenate Together Mix String Text Character

Math » Text » Join

Page 425

305 Replace

305.1 Description

Replaces all occurrences of a string with another string

305.2 Parameters

Name Description

Text The source of the text

Old Text The text replaced

New Text The text that replaces each occurrence

Set Where the resulting value is set

305.3 Keywords

Substitute Change String Text Character

Math » Text » Replace

Page 426

306 Set Text

306.1 Description

Changes the value of a string

306.2 Parameters

Name Description

Text The source of the text

Set Where the resulting value is set

306.3 Keywords

String Text Character

Math » Text » Set Text

Page 427

307 Substring

307.1 Description

Extracts a substring based on an index and length

307.2 Parameters

Name Description

Text The source of the text

Index Starting index of the substring

Length Amount of characters extracted

Set Where the resulting value is set

307.3 Keywords

String Text Character

Math » Text » Substring

Page 428

I.IV.I.I.XI PHYSICS 2D

Page 429

308 Physics 2D

308.1 Instructions

Add Explosion Force 2D

Add Force 2D

Change Mass 2D

Change Velocity 2D

Gravity Scale 2D

Is Kinematic 2D

Page 430

309 Add Explosion Force 2D

309.1 Description

Applies a force to a Rigidbody2D that simulates explosion effects

309.2 Parameters

Name Description

Rigidbody The game object with a Rigidbody2D component that receives the force

Origin The position where the explosion originates

Radius How far the blast reaches

Force The force of the explosion, which its at its maximum at the origin

Force Mode How the force is applied

309.3 Keywords

Apply Velocity Impulse Propel Push Pull Boom Physics Rigidbody

Physics 2D » Add Explosion Force 2D

Page 431

310 Add Force 2D

310.1 Description

Adds a force to a game object with a Rigidbody2D

310.2 Parameters

Name Description

Rigidbody The game object that will receive the force. A Rigidbody2D attached is required

Direction The direction in which the force will be applied

Force The amount of force applied

Force Mode The type of force applied

310.3 Keywords

Apply Velocity Impulse Propel Push Pull Physics Rigidbody

Physics 2D » Add Force 2D

Page 432

311 Change Mass 2D

311.1 Description

Changes the mass of a Rigidbody2D

311.2 Parameters

Name Description

Rigidbody The game object with a Rigidbody2D attached that will change its mass

Mass The new mass the game object will be set to have

311.3 Keywords

Weight Physics Rigidbody

Physics 2D » Change Mass 2D

Page 433

312 Change Velocity 2D

312.1 Description

Changes the current velocity of a Rigidbody2D

312.2 Parameters

Name Description

Rigidbody The game object with a Rigidbody2D attached that will change its velocity

Velocity The velocity the game object will change to

312.3 Keywords

Speed Movement Physics Rigidbody

Physics 2D » Change Velocity 2D

Page 434

313 Gravity Scale 2D

313.1 Description

Controls whether how gravity affects the Rigidbody2D

313.2 Parameters

Name Description

Rigidbody The game object with a Rigidbody2D attached that changes its gravity scale

Gravity Scale The degree to which this object is affected by gravity

313.3 Keywords

Physics Rigidbody

Physics 2D » Gravity Scale 2D

Page 435

314 Is Kinematic 2D

314.1 Description

Controls whether physics affects the Rigidbody2D

314.2 Parameters

Name Description

Rigidbody The game object with a Rigidbody2D attached that changes its kinematic usage

Is Kinematic If enabled, forces, collisions or joints do not affect the rigidbody anymore

314.3 Keywords

Physics Rigidbody

Physics 2D » Is Kinematic 2D

Page 436

I.IV.I.I.XII PHYSICS 3D

Page 437

315 Physics 3D

315.1 Instructions

Add Explosion Force 3D

Add Force 3D

Change Mass 3D

Change Velocity 3D

Is Kinematic 3D

Overlap Box 2D

Overlap Box 3D

Overlap Circle 3D

Overlap Sphere 3D

Trace Line 3D

Use Gravity 3D

Page 438

316 Add Explosion Force 3D

316.1 Description

Applies a force to a Rigidbody that simulates explosion effects

316.2 Parameters

Name Description

Rigidbody The game object with a Rigidbody component that receives the force

Origin The position where the explosion originates

Radius How far the blast reaches

Force The force of the explosion, which its at its maximum at the origin

Force Mode How the force is applied

316.3 Keywords

Apply Velocity Impulse Propel Push Pull Boom Physics Rigidbody

Physics 3D » Add Explosion Force 3D

Page 439

317 Add Force 3D

317.1 Description

Adds a force to a game object with a Rigidbody

317.2 Parameters

Name Description

Rigidbody The game object with a Rigidbody component that receives the force

Direction The direction in which the force is applied

Force The amount of force applied

Force Mode The type of force applied

Space Mode Whether the force is applied in local or world space

317.3 Keywords

Apply Velocity Impulse Propel Push Pull Physics Rigidbody

Physics 3D » Add Force 3D

Page 440

318 Change Mass 3D

318.1 Description

Changes the mass of a Rigidbody

318.2 Parameters

Name Description

Rigidbody The game object with a Rigidbody attached that changes its mass

Mass The new mass the game object

318.3 Keywords

Weight Physics Rigidbody

Physics 3D » Change Mass 3D

Page 441

319 Change Velocity 3D

319.1 Description

Changes the current velocity of a Rigidbody

319.2 Parameters

Name Description

Rigidbody The game object with a Rigidbody attached that changes its velocity

Velocity The velocity the game object changes to

319.3 Keywords

Speed Movement Physics Rigidbody

Physics 3D » Change Velocity 3D

Page 442

320 Is Kinematic 3D

320.1 Description

Controls whether physics affects the Rigidbody

320.2 Parameters

Name Description

Rigidbody The game object with a Rigidbody attached that changes its kinematic usage

Is Kinematic If enabled, forces, collisions or joints do not affect the rigidbody anymore

320.3 Keywords

Physics Rigidbody

Physics 3D » Is Kinematic 3D

Page 443

321 Overlap Box 2D

321.1 Description

Captures all colliders caught inside a box

321.2 Parameters

Name Description

Center The center of the box

Size The size of the box in each axis

Angle The rotation of the box in world space

Store In The list where the colliders (if any) are stored

Layer Mask A mask that determines which colliders are ignored and which aren't

321.3 Keywords

Cube Cast Collect Physics Rigidbody

Physics 3D » Overlap Box 2D

Page 444

322 Overlap Box 3D

322.1 Description

Captures all colliders caught inside a box

322.2 Parameters

Name Description

Center The center of the box

Half Extents Half of the size of the box in each axis

Rotation The rotation of the box in world space

Store In The list where the colliders (if any) are stored

Layer Mask A mask that determines which colliders are ignored and which aren't

322.3 Keywords

Cube Cast Collect Physics Rigidbody

Physics 3D » Overlap Box 3D

Page 445

323 Overlap Circle 2D

323.1 Description

Captures all colliders caught inside a Circle defined by a point and radius

323.2 Parameters

Name Description

Center The center of the circle

Radius The radius of the circle

Store In The list where the colliders (if any) are stored

Layer Mask A mask that determines which colliders are ignored and which aren't

323.3 Keywords

Cast Collect Physics Rigidbody

Physics 3D » Overlap Circle 3D

Page 446

324 Overlap Sphere 3D

324.1 Description

Captures all colliders caught inside a sphere defined by a point and radius

324.2 Parameters

Name Description

Center The center of the sphere

Radius The radius of the sphere

Store In The list where the colliders (if any) are stored

Layer Mask A mask that determines which colliders are ignored and which aren't

324.3 Keywords

Circle Cast Collect Physics Rigidbody

Physics 3D » Overlap Sphere 3D

Page 447

325 Trace Line 3D

325.1 Description

Captures all colliders caught inside a line between A and B

325.2 Parameters

Name Description

Point A The position of the first point

Point B The position of the second point

Store In The list where the colliders (if any) are stored

Layer Mask A mask that determines which colliders are ignored and which aren't

325.3 Keywords

Line Trace Raycast Cast Collect Physics Rigidbody

Physics 3D » Trace Line 3D

Page 448

326 Use Gravity 3D

326.1 Description

Controls whether gravity affects the Rigidbody

326.2 Parameters

Name Description

Rigidbody The game object with a Rigidbody attached that changes its gravity usage

Use Gravity If set to false the rigidbody behaves as in outer space

326.3 Keywords

Physics Rigidbody

Physics 3D » Use Gravity 3D

Page 449

I.IV.I.I.XIII RENDERER

Page 450

327 Renderer

327.1 Instructions

Change Material Color

Change Material Float

Change Material Texture

Change Material

Change Sprite

Page 451

328 Change Material Color

328.1 Description

Changes over time the Color property of an instantiated material of a Renderer component

328.2 Parameters

Name Description

Property Name of the property to change

Color Color target that the instantiated Material turns into

Duration How long it takes to perform the transition

Easing The change rate of the transition over time

Wait to Complete Whether to wait until the transition is finished or not

Renderer The game object with a Renderer component attached

328.3 Keywords

Set Shader Hue Change

Renderer » Change Material Color

Page 452

329 Change Material Float

329.1 Description

Changes over time the Float property of an instantiated material of a Renderer component

329.2 Parameters

Name Description

Property Name of the property to change

Float Decimal target that the instantiated Material's property turns into

Duration How long it takes to perform the transition

Easing The change rate of the transition over time

Wait to Complete Whether to wait until the transition is finished or not

Renderer The game object with a Renderer component attached

329.3 Keywords

Set Shader Hue Change

Renderer » Change Material Float

Page 453

330 Change Material Texture

330.1 Description

Changes the main texture of an instantiated material of a Renderer component

330.2 Parameters

Name Description

Texture Texture that replaces the Renderer's instantiated material

Renderer The game object with a Renderer component attached

330.3 Keywords

Set Shader Change

Renderer » Change Material Texture

Page 454

331 Change Material

331.1 Description

Changes instantiated material of a Renderer component

331.2 Parameters

Name Description

Material Material that is set as the primary type of the Renderer

Renderer The game object with a Renderer component attached

331.3 Keywords

Set Shader Texture Change

Renderer » Change Material

Page 455

332 Change Sprite

332.1 Description

Sets the Sprite value

332.2 Parameters

Name Description

To Where to store the new Sprite value

Sprite The Sprite value to be stored

332.3 Keywords

Texture Renderer

Renderer » Change Sprite

Page 456

I.IV.I.I.XIV SCENES

Page 457

333 Scenes

333.1 Instructions

Load Scene

Unload Scene

Page 458

334 Load Scene

334.1 Description

Loads a new Scene

334.2 Parameters

Name Description

Scene The scene to be loaded

Mode Single mode replaces all other scenes. Additive mode loads the scene on top of the others

Async Loads the scene in the background or freeze the game until its done

Scene Entries Define the starting location of the player and other characters after loading the scene

334.3 Keywords

Change

Scenes » Load Scene

Page 459

335 Unload Scene

335.1 Description

Unloads an active scene

335.2 Parameters

Name Description

Scene The scene to be unloaded

335.3 Keywords

Change Remove

Scenes » Unload Scene

Page 460

I.IV.I.I.XV STORAGE

Page 461

336 Storage

336.1 Instructions

Delete Game

Load Game

Load Latest Game

Reset Game

Save Game

Page 462

337 Delete Game

337.1 Description

Deletes a previously saved game state

337.2 Parameters

Name Description

Save Slot Slot number that is erased. Default is 1

337.3 Keywords

Load Save Delete Profile Slot Game Session

Storage » Delete Game

Page 463

338 Load Game

338.1 Description

Loads a previously saved state of a game

338.2 Parameters

Name Description

Save Slot ID number to load the game from. It can range between 1 and 9999

338.3 Keywords

Load Save Profile Slot Game Session

Storage » Load Game

Page 464

339 Load Latest Game

339.1 Description

Loads the latest previously saved state of a game

339.2 Keywords

Load Save Last Profile Game Session

Storage » Load Latest Game

Page 465

340 Reset Game

340.1 Description

Resets the current game to its default values

340.2 Parameters

Name Description

Scene The scene to move after resetting the data

340.3 Keywords

Load Save Profile Slot Game Session

Storage » Reset Game

Page 466

341 Save Game

341.1 Description

Saves the current state of the game

341.2 Parameters

Name Description

Save Slot ID number to save the game. It can range between 1 and 9999

341.3 Keywords

Load Save Profile Slot Game Session

Storage » Save Game

Page 467

I.IV.I.I.XVI TESTING

Page 468

342 Testing

342.1 Instructions

Instruction Tester

Page 469

343 Tester

343.1 Description

Appends a character to a static Chain field. For internal testing use only

343.2 Parameters

Name Description

Character A character that will be appended to InstructionTester.Chain

343.3 Example 1

Note that this Instruction is not accessible through the Inspector to avoid confusing new users. To run the test suit

environment, create a new InstructionList object and append as many InstructionTester instances as your

test requires.

This instruction is for internal testing only.

Testing » Instruction Tester

InstructionList instructions = new InstructionList(

new InstructionTester('a'),

new InstructionTester('b'),

new InstructionTester('c')

);

InstructionTester.Clear();

instructions.Run(null);

Debug.Log(InstructionTester.Chain);

// Prints: 'abc'

Page 470

I.IV.I.I.XVII TIME

Page 471

344 Time

344.1 Instructions

Time Scale

Wait Frames

Wait Seconds

Page 472

345 Time Scale

345.1 Description

Changes the Time Scale of the game

345.2 Parameters

Name Description

Time Scale The scale at which time passes. This can be used for slow motion effects

Blend Time How long it takes to transition from the current time scale to the new one

Layer Any time scale values using the same Layer is overwritten by this one.

345.3 Example 1

Setting a Time Scale of 0 will freeze the game. Useful for pausing the game

345.4 Example 2

The resulting Time Scale will be equal to the lowest time scale value between all Layers. For example, if the Time

Scale with Layer = 0 has a value of 0.5 (which makes characters move in slow motion), and another Time Scale with

Layer = 1 with a value of 0, the resulting Time Scale will be 0

345.5 Keywords

Slow Motion Bullet Time Matrix

Time » Time Scale

Page 473

346 Wait Frames

346.1 Description

Waits a certain amount of frames

346.2 Parameters

Name Description

Frames The amount of frames to wait

346.3 Example 1

This instruction is particularly useful in cases where you want to control the order of execution of two Actions. For

example, imagine there are two Triggers executing at the same time, but you want to execute the instructions

associated with one after the execution of the other one. You can use the 'Wait Frames' instruction to defer its

execution 1 frame so the other one has had time to complete its own execution

346.4 Keywords

Wait Time Frames Yield

Time » Wait Frames

Page 474

347 Wait Seconds

347.1 Description

Waits a certain amount of seconds

347.2 Parameters

Name Description

Seconds The amount of seconds to wait

Mode Whether to use the time scale or not

347.3 Keywords

Wait Time Seconds Minutes Cooldown Timeout Yield

Time » Wait Seconds

Page 475

I.IV.I.I.XVIII TRANSFORMS

Page 476

348 Transforms

348.1 Instructions

Change Position

Change Rotation

Change Scale

Clear Parent

Look At

Set Parent

Page 477

349 Change Position

349.1 Description

Changes the position of a game object over time

349.2 Parameters

Name Description

Position The desired position of the game object

Space If the transformation occurs in local or world space

Duration How long it takes to perform the transition

Easing The change rate of the translation over time

Wait to Complete Whether to wait until the translation is finished or not

Transform The Transform of the game object

349.3 Keywords

Location Translate Move Displace Set

Transforms » Change Position

Page 478

350 Change Rotation

350.1 Description

Changes the rotation of a game object over time

350.2 Parameters

Name Description

Rotation The desired rotation of the game object

Space If the transformation occurs in local or world space

Duration How long it takes to perform the transition

Easing The change rate of the rotation over time

Wait to Complete Whether to wait until the rotation is finished or not

Transform The Transform of the game object

350.3 Keywords

Rotate Angle Euler Tilt Pitch Yaw Roll

Transforms » Change Rotation

Page 479

351 Change Scale

351.1 Description

Changes the local scale of a game object over time

351.2 Parameters

Name Description

Scale The desired scale of the game object

Duration How long it takes to perform the transition

Easing The change rate of the scaling over time

Wait to Complete Whether to wait until the scaling is finished or not

Transform The Transform of the game object

351.3 Keywords

Size Resize Grow Reduce Small Big

Transforms » Change Scale

Page 480

352 Clear Parent

352.1 Description

Clears the parent of a game object

352.2 Parameters

Name Description

Transform The Transform of the game object

352.3 Keywords

Child Children Hierarchy Orphan

Transforms » Clear Parent

Page 481

353 Look At

353.1 Description

Rotates the transform towards the chosen target

353.2 Parameters

Name Description

Target The desired targeted object to look at

Transform The Transform of the game object

353.3 Keywords

Rotate Rotation See

Transforms » Look At

Page 482

354 Set Parent

354.1 Description

Changes the parent of a game object

354.2 Parameters

Name Description

Parent The game object that becomes the parent

Transform The Transform of the game object

354.3 Keywords

Child Children Hierarchy Hang Inherit

Transforms » Set Parent

Page 483

I.IV.I.I.XIX UI

Page 484

355 Ui

355.1 Instructions

Canvas Group Alpha

Canvas Group Block Raycasts

Canvas Group Interactable

Change Dropdown

Change Font Size

Change Graphic Color

Change Height

Change Image

Change Input Field

Change Slider

Change Text

Change Toggle

Change Width

Focus On

Submit

Unfocus

Page 485

356 Canvas Group Alpha

356.1 Description

Changes the opacity of the Canvas Group and affects all of its children

356.2 Parameters

Name Description

Canvas Group The Canvas Group component that changes its value

Alpha The new opacity value transformation of the Canvas Group

Duration How long it takes to perform the transition

Easing The change rate of the parameter over time

Wait to Complete Whether to wait until the transition is finished

UI » Canvas Group Alpha

Page 486

357 Canvas Group Block Raycasts

357.1 Description

Changes whether the Canvas Group blocks raycasts or not

357.2 Parameters

Name Description

Canvas Group The Canvas Group component that changes its value

Block Raycasts If true, the canvas group and its children block raycasts

UI » Canvas Group Block Raycasts

Page 487

358 Canvas Group Interactable

358.1 Description

Changes the interactable value of a Canvas Group component

358.2 Parameters

Name Description

Canvas Group The Canvas Group component that changes its value

Interactable The on/off state value

UI » Canvas Group Interactable

Page 488

359 Change Dropdown

359.1 Description

Changes the value of a Dropdown or Text Mesh Pro Dropdown component

359.2 Parameters

Name Description

Text The Text or Text Mesh Pro component that changes its value

Index The new index value of the Dropdown

UI » Change Dropdown

Page 489

360 Change Font Size

360.1 Description

Changes the size of the Text or Text Mesh Pro component content

360.2 Parameters

Name Description

Text The Text or Text Mesh Pro component that changes its font size

Size The new text size, in pixels

360.3 Keywords

Text

UI » Change Font Size

Page 490

361 Change Graphic Color

361.1 Description

Changes the color of a Graphic component

361.2 Parameters

Name Description

Graphic The Graphic component that changes its tint color

Color The new Color

UI » Change Graphic Color

Page 491

362 Change Height

362.1 Description

Changes the Height of a Rect Transform

362.2 Parameters

Name Description

Rect Transform The Rect Transform component to change

Height The new height value. Also known as sizeDelta.y

UI » Change Height

Page 492

363 Change Image

363.1 Description

Changes the Sprite of an Image component

363.2 Parameters

Name Description

Override Sprite If the Sprite replaced is the original or the overriden

Image The Image component that changes its sprite value

Sprite The new Sprite reference

UI » Change Image

Page 493

364 Change Input Field

364.1 Description

Changes the value of an Input Field or Text Mesh Pro Input Field

364.2 Parameters

Name Description

Input Field The Input Field or TMP Input Field component that changes its value

Value The new value set

UI » Change Input Field

Page 494

365 Change Slider

365.1 Description

Changes the value of a Slider component

365.2 Parameters

Name Description

Slider The Slider component that changes its value

Value The new value set

UI » Change Slider

Page 495

366 Change Text

366.1 Description

Changes the value of a Text or Text Mesh Pro component

366.2 Parameters

Name Description

Text The Text or Text Mesh Pro component that changes its value

Value The new value set

UI » Change Text

Page 496

367 Change Toggle

367.1 Description

Changes the value of a Toggle component

367.2 Parameters

Name Description

Toggle The Toggle component that changes its value

Value The new value set

UI » Change Toggle

Page 497

368 Change Width

368.1 Description

Changes the Width of a Rect Transform

368.2 Parameters

Name Description

Rect Transform The Rect Transform component to change

Width The new width value. Also known as sizeDelta.x

UI » Change Width

Page 498

369 Focus On

369.1 Description

Focuses on a specific UI component

369.2 Parameters

Name Description

Focus On The UI component that takes focus

369.3 Keywords

Select

UI » Focus On

Page 499

370 Submit

370.1 Description

Performs a submit action on a UI element

370.2 Keywords

Enter Press Confirm

UI » Submit

Page 500

371 Unfocus

371.1 Description

Removes the focus from any UI component

371.2 Keywords

Deselect Lose

UI » Unfocus

Page 501

I.IV.I.I.XX VARIABLES

Page 502

372 Variables

372.1 Instructions

Change Id

Clear List

Collect Characters

Collect Markers

Filter List

Iterator Next

Iterator Previous

Iterator Random

Loop List

Move List

Remove From List

Reverse List

Shuffle List

Sort List Alphabetically

Sort List By Distance

Swap List

Page 503

373 Change ID

373.1 Description

Changes the Local Name or List Variable's ID. It only works on non-Savable variables

373.2 Parameters

Name Description

ID The new ID of the Local Variable

373.3 Keywords

Unique Guid

Variables » Change ID

Page 504

374 Clear List

374.1 Description

Removes all elements of a given Local or Global List Variables

374.2 Parameters

Name Description

List Variable Local List or Global List which elements are removed

374.3 Keywords

Clean Remove Delete Destroy Size Array List Variables

Variables » Clear List

Page 505

375 Collect Characters

375.1 Description

Collects all Characters that within a certain radius of a position

375.2 Parameters

Name Description

Origin The position where the rest of the game objects are collected

Max Radius How far from the Origin the game objects are collected

Min Radius How far from the Origin game objects start to be collected

Store In List where the collected game objects are saved

Filter Checks a set of Conditions with each collected game object

375.3 Example 1

Note that in most cases it is not desirable to set the Min Radius to 0. Doing so will also collect game objects at a

distance of 0 from the Origin. For example, if we want to collect all enemies around the Player and we set a Min

Radius of 0, the Player will also be collected because it's a Character at a distance 0 from himself

375.4 Keywords

Gather Get Set Array List Variables

Variables » Collect Characters

Page 506

376 Collect Markers

376.1 Description

Collects all Markers that within a certain radius of a position

376.2 Parameters

Name Description

Origin The position where the rest of the game objects are collected

Max Radius How far from the Origin the game objects are collected

Min Radius How far from the Origin game objects start to be collected

Store In List where the collected game objects are saved

Filter Checks a set of Conditions with each collected game object

376.3 Example 1

Note that in most cases it is not desirable to set the Min Radius to 0. Doing so will also collect game objects at a

distance of 0 from the Origin. For example, if we want to collect all enemies around the Player and we set a Min

Radius of 0, the Player will also be collected because it's a Character at a distance 0 from himself

376.4 Keywords

Gather Get Set Array List Variables

Variables » Collect Markers

Page 507

377 Filter List

377.1 Description

Checks Conditions against each element of a list and removes it if the Condition is not true

377.2 Parameters

Name Description

List

Variable

Local List or Global List which elements are filtered

Filter Checks a set of Conditions with each collected game object and removes the element if the

Condition is not true

377.3 Example 1

The Filter field runs the Conditions list for each element in a Local List Variables or Global List Variables. It sets as

the 'Target' value the currently examined game object. For example, filtering by the tag name 'Enemy' can be done

using the 'Tag' Condition and comparing the field 'Target' with the string 'Enemy'. All game objects that are not

tagged as 'Enemy' are removed

377.4 Keywords

Remove Pick Select Array List Variables

Variables » Filter List

Page 508

378 Iterator Next

378.1 Description

Increases in one unit the value used as an iterator for a List Variable

378.2 Parameters

Name Description

Index The numeric value used as an index

List Variables The List Variable targeted

Mode Whether the index loops back to the first index or is clamped

378.3 Keywords

Iterate Index For Loop Access

Variables » Iterator Next

Page 509

379 Iterator Previous

379.1 Description

Decreases in one unit the value used as an iterator for a List Variable

379.2 Parameters

Name Description

Index The numeric value used as an index

List Variables The List Variable targeted

Mode Whether the index loops back to the last index or is clamped at zero

379.3 Keywords

Iterate Index For Loop Access

Variables » Iterator Previous

Page 510

380 Iterator Random

380.1 Description

Sets a random value between zero and the list count

380.2 Parameters

Name Description

Index The numeric value used as an index

List Variables The List Variable targeted

380.3 Keywords

Iterate Index For Loop Access

Variables » Iterator Random

Page 511

381 Loop List

381.1 Description

Loops a Game Object List Variables and executes an Actions component for each value

381.2 Parameters

Name Description

List

Variable

Local List or Global List which elements are iterated

Actions The Actions component executed for each element in the list. The Target argument of any

Instruction contains the object inspected

381.3 Keywords

Iterate Cycle Every All Stack

Variables » Loop List

Page 512

382 Move List

382.1 Description

Move a position from a list to another position

382.2 Parameters

Name Description

List Variable Local List or Global List which elements are moved

382.3 Keywords

Order Change Array List Variables

Variables » Move List

Page 513

383 Remove from List

383.1 Description

Deletes an element from a given Local or Global List Variables

383.2 Parameters

Name Description

List Variable Local List or Global List which elements are removed

383.3 Keywords

Delete Destroy Size Array List Variables

Variables » Remove from List

Page 514

384 Reverse List

384.1 Description

Reorders the elements of a list so the first ones become the last ones

384.2 Parameters

Name Description

List Variable Local List or Global List which elements are reversed

384.3 Keywords

Invert Order Sort Array List Variables

Variables » Reverse List

Page 515

385 Shuffle List

385.1 Description

Randomly shuffles the position of each element on a List Variable

385.2 Parameters

Name Description

List Variable Local List or Global List which elements are shuffled

385.3 Keywords

Randomize Sort Array List Variables

Variables » Shuffle List

Page 516

386 Sort List Alphabetically

386.1 Description

Sorts the List Variable elements based on their alphabet distance

386.2 Parameters

Name Description

List Variable Local List or Global List which elements are sorted

Order Sort alphabetically ascending or descending

Ignore Case Whether the string comparison should ignore upper/lower case

386.3 Keywords

Order Organize Array List Variables

Variables » Sort List Alphabetically

Page 517

387 Sort List by Distance

387.1 Description

Sorts the List Variable elements based on their distance to a given position

387.2 Parameters

Name Description

List Variable Local List or Global List which elements are sorted

Position The reference position that is used to measure the sorting distance

Order From Closest to Farthest puts the closest elements to the Position first

387.3 Keywords

Order Organize Array List Variables

Variables » Sort List by Distance

Page 518

388 Swap List

388.1 Description

Swaps two positions of a list

388.2 Parameters

Name Description

List Variable Local List or Global List which elements are swapped

388.3 Keywords

Order Change Array List Variables

Variables » Swap List

Page 519

I.IV.I.I.XXI VISUAL SCRIPTING

Page 520

389 Visual Scripting

389.1 Instructions

Activate Hotspots

Broadcast Message

Check Conditions

Emit Signal

Invoke Method

Restart Instructions

Run Actions

Run Conditions

Run Trigger

Stop Actions

Stop Conditions

Stop Trigger

Page 521

390 Activate Hotspots

390.1 Description

Determines whether Hotspots can be activated or are inactive by type

390.2 Parameters

Name Description

Type The type of Hotspots to activate or deactivate

Active Determines if Hotspots can run or are inactive

390.3 Keywords

Execute Enable Disable Show Hide Deactivate

Visual Scripting » Activate Hotspots

Page 522

391 Broadcast Message

391.1 Description

Invokes any method on any component found on the target game object

391.2 Parameters

Name Description

Game Object The target game object that receives the broadcast message

Message The name of the method or methods that are called

Send Upwards If true the message travels from the game object towards the root

391.3 Example 1

By default all broadcast messages travel from the target game object and towards all its children. Setting the Send

Upwards field to true makes the message travel from the game object towards the root parent

391.4 Keywords

Execute Call Invoke Function

Visual Scripting » Broadcast Message

Page 523

392 Check Conditions

392.1 Description

If any of the Conditions list is false it early exits and skips the execution of the rest of the Instructions below

392.2 Parameters

Name Description

Conditions List of Conditions that can evaluate to true or false

Mode Whether to check the Conditions as an AND or an OR set

392.3 Keywords

Execute Call Check Evaluate

Visual Scripting » Check Conditions

Page 524

393 Emit Signal

393.1 Description

Emits a specific signal, which is captured by other listeners

393.2 Parameters

Name Description

Signal The signal name emitted

393.3 Keywords

Event Raise Command Fire Trigger Dispatch Execute

Visual Scripting » Emit Signal

Page 525

394 Invoke Method

394.1 Description

Invokes a method from any script attached to a game object

394.2 Parameters

Name Description

Method The method/function that is called on a game object reference

394.3 Keywords

Execute Call Invoke Function

Visual Scripting » Invoke Method

Page 526

395 Restart Instructions

395.1 Description

Stops executing the current list of Instructions and starts again from the top

395.2 Keywords

Reset Call Again

Visual Scripting » Restart Instructions

Page 527

396 Run Actions

396.1 Description

Executes an Actions component object

396.2 Parameters

Name Description

Actions The Actions object that is executed

Wait Until Complete If true this instruction waits until the Actions object finishes running

396.3 Keywords

Execute Call Instruction Action

Visual Scripting » Run Actions

Page 528

397 Run Conditions

397.1 Description

Executes a Conditions component object

397.2 Parameters

Name Description

Conditions The Conditions object that is executed

Wait Until Complete If true this instruction waits until the Conditions object finishes running

397.3 Keywords

Execute Call Check Evaluate

Visual Scripting » Run Conditions

Page 529

398 Run Trigger

398.1 Description

Executes a Trigger component object

398.2 Parameters

Name Description

Trigger The Trigger object that is executed

Wait Until Complete If true this instruction waits until the Trigger object finishes running

398.3 Keywords

Execute Call

Visual Scripting » Run Trigger

Page 530

399 Stop Actions

399.1 Description

Stops an Actions component object that is being executed

399.2 Parameters

Name Description

Actions The Actions object that is stopped

399.3 Keywords

Cancel Pause

Visual Scripting » Stop Actions

Page 531

400 Stop Conditions

400.1 Description

Stops a Conditions component object that is being executed

400.2 Parameters

Name Description

Conditions The Conditions object that is stopped

400.3 Keywords

Cancel Pause

Visual Scripting » Stop Conditions

Page 532

401 Stop Trigger

401.1 Description

Stops a Trigger component object that is being executed

401.2 Parameters

Name Description

Trigger The Trigger object that is stopped

401.3 Keywords

Cancel Pause

Visual Scripting » Stop Trigger

Page 533

402 Custom Instructions

Game Creator allows to very easily create custom Instructions and use them along with the rest.

This section assumes you have some programming knowledge. If you don't know how to code you might be interested

in checking out the Game Creator Hub page. Programmers altrusitically create custom Instructions for others to

download and use in their project.

402.1 Creating an Instruction

The easiest way to create an Instruction C# script is to right click on your Project panel and select Create → Game

Creator → Developer → C# Instruction. This will create a template script with the boilerplate structure of an

Instruction:

402.1.1 Anatomy of an Instruction

An Instruction is a class that inherits from the Instruction super class. The abstract Run(...) method is the

entry point of an Instruction's execution, which is automatically called when it's this instruction's time to be

executed.

The Run(...) method has a single parameter of type Args , which is a helper class that contains a reference to the

game object that initiated the call (args.Self) and the targeted game object (args.Target), if any.

402.1.2 Yielding in Time

Most instruction will be executed in a single frame. However, some instructions might require to put the execution on

hold for a certain amount of time, before resuming the execition. The most simple example is with the "Wait for

Seconds" instruction, which pauses the execution for a few seconds before resuming.

Programming Knowledge Required

using System;

using System.Threading.Tasks;

using GameCreator.Runtime.Common;

using GameCreator.Runtime.VisualScripting;

[Serializable]

public class MyInstruction : Instruction

{

protected override Task Run(Args args)

{

// Your code here...

return DefaultResult;

}

}

https://gamecreator.io/hub

Page 534

The Instruction super class contains a collection of methods that helps with time management.

Instructions use the async/await methodology to manage the flow of an instruction over the course of time. Using the

await symbol requires the Run() method to have the async symbol on its method definition:

402.1.2.1 NextFrame

The NextFrame() methods pauses the execution of the Instruction for a single frame, then resumes.

402.1.2.2 Time

The Time(float time) method pauses the execution of an Instruction for a certain amount of time. The time

parameter is in seconds.

402.1.2.3 While

The While(Func<bool> function) method pauses the execution of an Instruction for as long as the result of the

method passed as a parameter returns true. This method is executed every frame and the execution will resume as

soon as it returns false .

402.1.2.4 Until

The Until(Func<bool> function) method pauses the execution of an Instruction for as long as the result of the

method passed as a parameter returns true. This method is executed every frame and the execution will resume as

soon as it returns true .

Async/Await

protected override async Task Run(Args args)

{ }

protected override async Task Run(Args args)

{

await this.NextFrame();

}

protected override async Task Run(Args args)

{

await this.Time(5f);

}

protected override async Task Run(Args args)

{

await this.While(() => this.IsPlayerMoving());

}

Page 535

402.1.3 Decoration & Documentation

It is highly recommended to document and decorate the Instruction so it's easier to find and use. It is done using

class-type attributes that inform Game Creator of the quirks of this particular instruction.

For example, to set the title of an instruction to "Hello World", use the [Title(string name)] attribute right above

the class definition:

402.1.3.1 Title

The title of the Instruction. If this attribute is not provided, the title will be a beautified version of the class name.

402.1.3.2 Description

A description of what the Instruction does. This is both used in the floating window documentation, as well as the

description text when uploading an Instruction to the Game Creator Hub.

402.1.3.3 Image

The [Image(...)] attribute changes the default icon of the Instruction for one of the default ones. It consists of 2

parameters:

Icon [Type]: a Type class of an IIcon derived class. Game Creator comes packed with a lot of icons although

you can also create your own.

Color [Color]: The color of the icon. Uses Unity's Color class.

protected override async Task Run(Args args)

{

await this.Until(() => this.PlayerHasReachedDestination());

}

using System;

using System.Threading.Tasks;

using GameCreator.Runtime.Common;

using GameCreator.Runtime.VisualScripting;

[Title("Hello World")]

[Serializable]

public class MyInstruction : Instruction

{

protected override Task Run(Args args)

{

// ...

}

}

[Title("Title of Instruction")]

[Description("Lorem Ipsum dolor etiam porta sem magna mollis")]

https://gamecreator.io/hub

Page 536

For example, one of the icons included is the "Solid Cube" icon. To display a red solid cube as the icon of the

instruction, use the following attribute:

402.1.3.4 Category

A sequence of sub-categories organized using the slash (/) character. This attribute helps keep the Instructions

organized when the Instructions list dropdown is displayed.

The example above will display the Instruction under the sub directory Category → Sub Category → Name.

402.1.3.5 Version

A semmantic version to keep track of the development of this Instruction. It's important to note that when updating

an Instruction to the Game Creator Hub, the version number must always be higher than the one on the server.

The semmantic version follows the standard Major Version, Minor Version, Patch Version. To know more about how

semmantic versioning works, read the following page: https://semver.org.

402.1.3.6 Parameters

When an Instruction has exposed fields in the Inspector, it's a good idea to document what these do. You can add as

many [Parameter(name, description)] attributes as exposed fields has the Instruction.

For example, if the Instruction has these two fields:

You can document those fields adding:

402.1.3.7 Keywords

Keywords are strings that help the fuzzy finder more easily search for an instruction. For example, the "Change

Position" instruction doesn't reference the word "move" or "translate" anywhere in its documentation. However, these

words are very likely to reference this instruction when the user types them in the search box.

402.1.3.8 Example

[Image(typeof(IconCubeSolid), Color.red)]

[Category("Category/Sub Category/Name")]

[Version(1, 5, 3)]

public bool waitForTime = true;

public float duration = 5f;

[Parameter("Wait For Time", "Whether to wait or not")]

[Parameter("Duration", "The amount of seconds to wait")]

[Keywords("Move", "Translate")]

https://gamecreator.io/hub
https://semver.org/

Page 537

The Example attribute allows to display a text as an example of use of this Instruction. There can be more than one

[Example(...)] attribute per instruction. This is particularly useful when uploading instructions on the Game

Creator Hub.

It is recommended to use Markdown notation when writing examples

You can use the @ character in front of a string to break the example text in multiple lines. To create a new paragraph,

simply add two new lines. For example:

402.1.3.9 Dependency

This attribute is optional and only used in the Game Creator Hub. If this Instruction uses some particular feature of a

specific module, it will first check if the user downloading this instruction has that module installed. If it does not, it

will display an error message and forbid downloading it. This is useful to avoid throwing programming errors.

The [Dependency(...)] attribute consists of 4 parameters:

Module ID: For example, the ID of the Inventory module is gamecreator.inventory .

Major Version: The minimum major version of the dependency module.

Minor Version: The minimum minor version of the dependency module.

Patch Version: The minimum patch version of the dependency module.

Markdown

[Example("Sed posuere consectetur est at lobortis)]

Multiple Lines

[Example(@"

This is the first paragraph.

This is also in the first paragraph, right after the previous sentence

This line is part of a new paragraph.

)]

[Dependency("gamecreator.inventory", 1, 5, 2)]

https://gamecreator.io/hub
https://gamecreator.io/hub
https://www.markdownguide.org/
https://gamecreator.io/hub

Page 538

I.IV.II Triggers

Page 539

403 Triggers

Triggers are components attached to game objects that listen to events that happen on the scene and react by

executing a sequence of instructions.

In the image above, the Trigger is listening for the Space keyboard key to be pressed down. As soon as that happens, it

calls the instructions list from below, which prints the message "Space key pressed!"

403.1 Creating a Trigger

Right click on the Hierarchy panel and select Game Creator → Visual Scripting → Trigger. A game object named

'Trigger' will appear in the scene with a component of the same name.

Alternatively you can also add the Trigger component to any game object clicking on the Inspector's Add

Component button and searching for Trigger.

To delete a Trigger component, simply click on the component's little cog button and select "Remove Component" from

the dropdown menu.

403.2 Changing the Event

Example

Deleting Triggers

Page 540

Triggers listen to very specific events, chosen by the user. To change the type of Event a Trigger listens, click on the

event name and a dropdown menu will appear. Navigate it using the mouse or searching for a specific event in the

seach box field.

403.3 Instructions

The Instructions list that appear below work exactly the same was the Actions component. For more information

about this component, visit the Actions page.

Page 541

I.IV.II.I Events

Page 542

404 Events

404.1 Sub Categories

Audio

Cameras

Characters

Input

Interactive

Lifecycle

Logic

Physics

Storage

Ui

Variables

Page 543

I.IV.II.I.I AUDIO

Page 544

405 Audio

405.1 Events

On Change Ambient Volume

On Change Master Volume

On Change Music Volume

On Change Sound Effects Volume

On Change Speech Volume

On Change Ui Volume

Page 545

406 On Change Ambient Volume

406.1 Description

Executed when the Ambient Volume is changed

406.2 Keywords

Audio Sound Level

Audio » On Change Ambient Volume

Page 546

407 On Change Master Volume

407.1 Description

Executed when the Master Volume is changed

407.2 Keywords

Audio Sound Level

Audio » On Change Master Volume

Page 547

408 On Change Music Volume

408.1 Description

Executed when the Music Volume is changed

408.2 Keywords

Audio Sound Level

Audio » On Change Music Volume

Page 548

409 On Change Sound Effects Volume

409.1 Description

Executed when the Sound Effects Volume is changed

409.2 Keywords

Audio Sound Level

Audio » On Change Sound Effects Volume

Page 549

410 On Change Speech Volume

410.1 Description

Executed when the Speech Volume is changed

410.2 Keywords

Audio Sound Level

Audio » On Change Speech Volume

Page 550

411 On Change UI Volume

411.1 Description

Executed when the UI Volume is changed

411.2 Keywords

Audio Sound Level

Audio » On Change UI Volume

Page 551

I.IV.II.I.II CAMERAS

Page 552

412 Cameras

412.1 Events

On Camera Change

On Change From Shot

On Change To Shot

Page 553

413 On Camera Change

413.1 Description

Executed when the Camera changes to another Camera Shot

413.2 Keywords

Shot Switch Cut

Cameras » On Camera Change

Page 554

414 On Change from Shot

414.1 Description

Executed when the Camera Shot is deactivated

414.2 Keywords

Shot Switch Cut

Cameras » On Change from Shot

Page 555

415 On Change to Shot

415.1 Description

Executed when the Camera Shot is activated

415.2 Keywords

Shot Switch Cut

Cameras » On Change to Shot

Page 556

I.IV.II.I.III CHARACTERS

Page 557

416 Characters

416.1 Sub Categories

Combat

Navigation

Ragdoll

416.2 Events

On Become Npc

On Become Player

On Change Model

On Die

On Revive

Page 558

417 On Become NPC

417.1 Description

Executed when a character that is a Player becomes an NPC

Characters » On Become NPC

Page 559

418 On Become Player

418.1 Description

Executed when a character becomes the Player

Characters » On Become Player

Page 560

419 On Change Model

419.1 Description

Executed when a character changes its model

Characters » On Change Model

Page 561

420 On Die

420.1 Description

Executed when the character dies

Characters » On Die

Page 562

421 On Revive

421.1 Description

Executed when a dead character revives

421.2 Keywords

Resurrect Respawn

Characters » On Revive

Page 563

I.IV.II.I.III.I Combat

Page 564

422 Combat

422.1 Events

On Defense Change

On Dodge

On Invincibility Change

On Poise Break

On Poise Change

On Target Change

Page 565

423 On Defense Change

423.1 Description

Executed when the Character's defense changes

423.2 Keywords

Defend Block Combat

Characters » Combat » On Defense Change

Page 566

424 On Dodge

424.1 Description

Executed every time the character evades an attack

Characters » Combat » On Dodge

Page 567

425 On Invincibility Change

425.1 Description

Executed when the character's Invincibility changes

Characters » Combat » On Invincibility Change

Page 568

426 On Poise Break

426.1 Description

Executed when a character's Poise is broken

426.2 Keywords

Resistance Combat

Characters » Combat » On Poise Break

Page 569

427 On Poise Change

427.1 Description

Executed every time the character's combat Poise changes

427.2 Keywords

Resistance Combat

Characters » Combat » On Poise Change

Page 570

428 On Target Change

428.1 Description

Executed every time the character's combat Target changes

428.2 Keywords

Focus Combat Aim

Characters » Combat » On Target Change

Page 571

I.IV.II.I.III.II Navigation

Page 572

429 Navigation

429.1 Events

On Dash

On Jump

On Land

On Step

Page 573

430 On Dash

430.1 Description

Executed every time the character performs a dash

Characters » Navigation » On Dash

Page 574

431 On Jump

431.1 Description

Executed every time the character performs a jump

Characters » Navigation » On Jump

Page 575

432 On Land

432.1 Description

Executed every time the character lands on the ground

Characters » Navigation » On Land

Page 576

433 On Step

433.1 Description

Executed every time the character takes a step

433.2 Keywords

Footstep Foot Feet Ground

Characters » Navigation » On Step

Page 577

I.IV.II.I.III.III Ragdoll

Page 578

434 Ragdoll

434.1 Events

On Recover Ragdoll

On Start Ragdoll

Page 579

435 On Recover Ragdoll

435.1 Description

Executed when the character recovers from the ragdoll mode

Characters » Ragdoll » On Recover Ragdoll

Page 580

436 On Start Ragdoll

436.1 Description

Executed when the character enters the ragdoll mode

Characters » Ragdoll » On Start Ragdoll

Page 581

I.IV.II.I.IV INPUT

Page 582

437 Input

437.1 Events

On Cursor Click

On Input Button

On Input Flick

On Touch

Page 583

438 On Cursor Click

438.1 Description

Detects when the cursor clicks this game object

438.2 Parameters

Name Description

Button The mouse button to detect

Min

Distance

If set to None, the mouse input acts globally. If set to Game Object, the event only fires if the target

object is within a certain radius

438.3 Keywords

Down Mouse Button Hover Left Middle Right

Input » On Cursor Click

Page 584

439 On Input Button

439.1 Description

Detects when a button is interacted with

439.2 Parameters

Name Description

Button The button that triggers the event

Min

Distance

If set to None, the input acts globally. If set to Game Object, the event only fires if the target object

is within the specified radius

439.3 Keywords

Down Up Press Release Keyboard Mouse Button Gamepad Controller Joystick

Input » On Input Button

Page 585

440 On Input Flick

440.1 Description

Detects when Input (Vector 2) is flicked

440.2 Parameters

Name Description

Value The Input value read

Compare The comparison applied to the input value

Min

Distance

If set to None, the input acts globally. If set to Game Object, the event only fires if the target object

is within the specified radius

440.3 Keywords

Left Right Down Up Press Move Direction Keyboard Mouse Button Gamepad Controller Joystick

Input » On Input Flick

Page 586

441 On Touch

441.1 Description

Detects when a finger touches this game object on a touchscreen

441.2 Parameters

Name Description

Min

Distance

If set to None, the touch input acts globally. If set to Game Object, the event only fires if the target

object is within a certain radius

441.3 Keywords

Down Finger Press Click Finger Press Click

Input » On Touch

Page 587

I.IV.II.I.V INTERACTIVE

Page 588

442 Interactive

442.1 Events

On Blur

On Focus

On Interact

Page 589

443 On Blur

443.1 Description

Executed when the Character loses focus on this Interactive object

Interactive » On Blur

Page 590

444 On Focus

444.1 Description

Executed when the Character focuses on this Interactive object

Interactive » On Focus

Page 591

445 On Interact

445.1 Description

Executed when a Character interacts with this Trigger

445.2 Parameters

Name Description

Use Raycast Checks if there is something between the character and the Trigger

445.3 Example 1

The 'Use Raycast' option checks if there is no other collider between the Character and the Trigger

Interactive » On Interact

Page 592

I.IV.II.I.VI LIFECYCLE

Page 593

446 Lifecycle

446.1 Events

On App Focus

On App Pause

On App Quit

On Become Invisible

On Become Visible

On Disable

On Enable

On Fixed Update

On Interval

On Invoke

On Late Update

On Start

On Update

Page 594

447 On App Focus

447.1 Description

Executed when the standalone application is brought to focus

447.2 Keywords

Foreground

Lifecycle » On App Focus

Page 595

448 On App Pause

448.1 Description

Executed when the standalone application loses its focus

448.2 Keywords

Background Suspend

Lifecycle » On App Pause

Page 596

449 On App Quit

449.1 Description

Executed right before exiting the standalone application

449.2 Keywords

Exit Close

Lifecycle » On App Quit

Page 597

450 On Become Invisible

450.1 Description

Executed when the game object it is attached to is no longer visible by any camera

450.2 Keywords

Hide Disappear

Lifecycle » On Become Invisible

Page 598

451 On Become Visible

451.1 Description

Executed when the game object it is attached to becomes visible to any camera

451.2 Keywords

Show Render Appear

Lifecycle » On Become Visible

Page 599

452 On Disable

452.1 Description

Executed when the game object it is attached to becomes disabled or inactive

452.2 Keywords

Inactive Active Enable

Lifecycle » On Disable

Page 600

453 On Enable

453.1 Description

Executed when the game object it is attached to becomes enabled and active

453.2 Keywords

Active Disable Inactive

Lifecycle » On Enable

Page 601

454 On Fixed Update

454.1 Description

Executed every fixed frame as long as the game object is enabled (physics loop

454.2 Keywords

Loop Tick Continuous Physics Rigidbody

Lifecycle » On Fixed Update

Page 602

455 On Interval

455.1 Description

Executes after an amount of seconds have passed between each call

455.2 Parameters

Name Description

Time Mode The time scale in which the interval is calculated

Interval Amount of seconds between each iteration

455.3 Keywords

Loop Tick Continuous FPS

Lifecycle » On Interval

Page 603

456 On Invoke

456.1 Description

Executed only when calling its Invoke() method

456.2 Keywords

Script Manual

Lifecycle » On Invoke

Page 604

457 On Late Update

457.1 Description

Executed every frame after all On Update events are fired, as long as the game object is enabled

457.2 Keywords

Loop Tick Continuous

Lifecycle » On Late Update

Page 605

458 On Start

458.1 Description

Executed on the frame when the game object is enabled for the first time

458.2 Keywords

Initialize

Lifecycle » On Start

Page 606

459 On Update

459.1 Description

Executed every frame as long as the game object is enabled

459.2 Keywords

Loop Tick Continuous

Lifecycle » On Update

Page 607

I.IV.II.I.VII LOGIC

Page 608

460 Logic

460.1 Events

On Hotspot Activate

On Hotspot Deactivate

On Receive Signal

Page 609

461 On Hotspot Activate

461.1 Description

Executed when its associated Hotspot is activated

461.2 Keywords

Spot

Logic » On Hotspot Activate

Page 610

462 On Hotspot Deactivate

462.1 Description

Executed when its associated Hotspot is deactivated

462.2 Keywords

Spot

Logic » On Hotspot Deactivate

Page 611

463 On Receive Signal

463.1 Description

Executed when receiving a specific signal name from the dispatcher

463.2 Keywords

Event Command Fire Trigger Dispatch Execute

Logic » On Receive Signal

Page 612

I.IV.II.I.VIII PHYSICS

Page 613

464 Physics

464.1 Events

On Collide Exit

On Collide

On Trigger Enter Tag

On Trigger Enter

On Trigger Exit Tag

On Trigger Exit

On Trigger Stay

Page 614

465 On Collide Exit

465.1 Description

Executed when the Trigger that collided with a game object, stops colliding

465.2 Keywords

Crash Touch Bump Collision Stop

Physics » On Collide Exit

Page 615

466 On Collide

466.1 Description

Executed when the Trigger collides with a game object

466.2 Keywords

Crash Touch Bump Collision

Physics » On Collide

Page 616

467 On Trigger Enter Tag

467.1 Description

Executed when a game object with a Tag enters the Trigger collider

467.2 Parameters

Name Description

Tag A string that represents a group of game objects

467.3 Keywords

Pass Through Touch Collision Collide

Physics » On Trigger Enter Tag

Page 617

468 On Trigger Enter

468.1 Description

Executed when a game object enters the Trigger collider

468.2 Keywords

Pass Through Touch Collision Collide

Physics » On Trigger Enter

Page 618

469 On Trigger Exit Tag

469.1 Description

Executed when a game object with a Tag exists the Trigger collider

469.2 Parameters

Name Description

Tag A string that represents a group of game objects

469.3 Keywords

Pass Through Touch Collision Collide

Physics » On Trigger Exit Tag

Page 619

470 On Trigger Exit

470.1 Description

Executed when a game object leaves the Trigger collider

470.2 Keywords

Leave Through Touch Collision Collide

Physics » On Trigger Exit

Page 620

471 On Trigger Stay

471.1 Description

Executed while a game object stays inside the Trigger collider

471.2 Keywords

Pass Through Touch Collision Collide

Physics » On Trigger Stay

Page 621

I.IV.II.I.IX STORAGE

Page 622

472 Storage

472.1 Events

On Delete

On Load

On Save

Page 623

473 On Delete

473.1 Description

Executed when a previously saved game deleted

473.2 Keywords

Load Save Delete Profile Slot Game Session

Storage » On Delete

Page 624

474 On Load

474.1 Description

Executed when a previously saved game is loaded

474.2 Keywords

Load Save Profile Slot Game Session

Storage » On Load

Page 625

475 On Save

475.1 Description

Executed when the game is saved

475.2 Keywords

Load Save Profile Slot Game Session

Storage » On Save

Page 626

I.IV.II.I.X UI

Page 627

476 Ui

476.1 Events

On Deselect

On Hover Enter

On Hover Exit

On Select

Page 628

477 On Deselect

477.1 Description

Executed when the UI element is deselected

477.2 Keywords

Mouse Choose Focus Pick Pointer

UI » On Deselect

Page 629

478 On Hover Enter

478.1 Description

Executed when the pointer hovers the UI element

478.2 Keywords

Mouse Over Pointer

UI » On Hover Enter

Page 630

479 On Hover Exit

479.1 Description

Executed when the pointer exits the hovered UI element

479.2 Keywords

Mouse Over Pointer

UI » On Hover Exit

Page 631

480 On Select

480.1 Description

Executed when the UI element is selected

480.2 Keywords

Mouse Choose Focus Pick Pointer

UI » On Select

Page 632

I.IV.II.I.XI VARIABLES

Page 633

481 Variables

481.1 Events

On Global List Variable Change

On Global Name Variable Change

On Local List Variable Change

On Local Name Variable Change

Page 634

482 On Global List Variable Change

482.1 Description

Executed when the Global List Variable is modified

Variables » On Global List Variable Change

Page 635

483 On Global Name Variable Change

483.1 Description

Executed when the Global Name Variable is modified

Variables » On Global Name Variable Change

Page 636

484 On Local List Variable Change

484.1 Description

Executed when the Local List Variable is modified

Variables » On Local List Variable Change

Page 637

485 On Local Name Variable Change

485.1 Description

Executed when the Local Name Variable is modified

Variables » On Local Name Variable Change

Page 638

486 Custom Events

Game Creator allows to create custom Events that listen to events and react accordingly. Note that it's up to the

programmer to determine the most performant way to detect an event.

This section assumes you have some programming knowledge. If you don't know how to code you might be interested

in checking out the Game Creator Hub page. Programmers altrusitically create custom Events for others to download

and use in their project.

486.1 Creating an Event

The easiest way to create an Event C# script is to right click on your Project panel and select _Create → Game

Creator → Developer → C# Event. This will create a template script with the boilerplate structure:

486.1.1 Anatomy of an Event

An Event is a class that inherits from the Event super class. It contains a large collection of virtual methods to

inherit from, which are very similar to MonoBeheaviour methods.

For example, to detect when the Trigger component is initialized, you can override the OnAwake() or the OnStart()

methods. For a full list of all available methods to override, check the Event.cs script file.

All methods come with a trigger parameter, which references the Trigger component that owns this Event.

486.1.2 Fire an Event

Programming Knowledge Required

using System;

using GameCreator.Runtime.VisualScripting;

[Serializable]

public class MyEvent : Event

{

protected override void OnStart(Trigger trigger)

{

base.OnStart(trigger);

_ = trigger.Execute(this.Self);

}

}

Example

https://gamecreator.io/hub

Page 639

Once you have setup the necessary code to detect an event, it's time to tell the Trigger to exeecute the specified

reaction. This is done using the Execute(target) method from the Trigger component:

Note that the Execute(...) method returns an async task so the code can wait until the reaction completes before

resuming the execution. Most of the times however, you will prefer to fire and forget about the reaction. In those cases

you can use the discard (_) modifier:

On the other hand, if you want to wait until the instruction sequence has completed, you can await for the resolution of

these:

The Execute(target) method allows to pass a game object parameter, which is the Target game object of the

instructions list. For example, if the Event you are programming is trying to detect the collision between 2 colliders,

the target should reference the other collider game object.

486.1.3 Decoration & Documentation

It is highly recommended to document and decorate the Event so it's easier to find and use. It is done using class-

type attributes that inform Game Creator of the quirks of this particular event.

For example, to set the title of an Event to "Hello World", use the [Title(string name)] attribute right above the

class definition:

486.1.3.1 Title

The title of the Event. If this attribute is not provided, the title will be a beautified version of the class name.

trigger.Execute(this.Self);

Async/Await

_ = trigger.Execute(this.Self);

await trigger.Execute(this.Self);

using System;

using GameCreator.Runtime.VisualScripting;

[Title("Hello World")]

[Serializable]

public class MyEvent : Event

{

protected override void OnStart(Trigger trigger)

{

base.OnStart(trigger);

_ = trigger.Execute(this.Self);

}

}

Page 640

486.1.3.2 Description

A description of what the Event does. This is used as the description text when uploading an Event to the Game

Creator Hub.

486.1.3.3 Image

The [Image(...)] attribute changes the default icon of the Event for one of the default ones. It consists of 2

parameters:

Icon [Type]: a Type class of an IIcon derived class. Game Creator comes packed with a lot of icons although

you can also create your own.

Color [Color]: The color of the icon. Uses Unity's Color class.

For example, one of the icons included is the "Solid Cube" icon. To display a red solid cube as the icon of the event,

use the following attribute:

486.1.3.4 Category

A sequence of sub-categories organized using the slash (/) character. This attribute helps keep the Events

organized when the dropdown list is displayed.

The example above will display the Event under the sub directory Category → Sub Category → Name.

486.1.3.5 Version

A semmantic version to keep track of the development of this Event. It's important to note that when updating an

Event to the Game Creator Hub, the version number must always be higher than the one on the server.

The semmantic version follows the standard Major Version, Minor Version, Patch Version. To know more about how

semmantic versioning works, read the following page: https://semver.org.

486.1.3.6 Parameters

When an Event has exposed fields in the Inspector, it's a good idea to document what these do. You can add as

many [Parameter(name, description)] attributes as exposed fields has the Event.

For example, if the Event has these two fields:

[Title("Title of Event")]

[Description("Lorem Ipsum dolor etiam porta sem magna mollis")]

[Image(typeof(IconCubeSolid), Color.red)]

[Category("Category/Sub Category/Name")]

[Version(1, 5, 3)]

https://gamecreator.io/hub
https://gamecreator.io/hub
https://gamecreator.io/hub
https://semver.org/

Page 641

You can document those fields adding:

486.1.3.7 Keywords

Keywords are strings that help the fuzzy finder more easily search for an Event. For example, the "On Become

Visible" event doesn't reference the word "hide" anywhere in its documentation. However, these words are very likely

to reference this event when the user types them in the search box.

486.1.3.8 Example

The Example attribute allows to display a text as an example of use of this Event. There can be more than one

[Example(...)] attribute per event. This is particularly useful when uploading events on the Game Creator Hub.

It is recommended to use Markdown notation when writing examples

You can use the @ character in front of a string to break the example text in multiple lines. To create a new paragraph,

simply add two new lines. For example:

486.1.3.9 Dependency

This attribute is optional and only used in the Game Creator Hub. If this Event uses some particular feature of a

specific module, it will first check if the user downloading this event has that module installed. If it does not, it will

display an error message and forbid downloading it. This is useful to avoid throwing programming errors.

public bool checkDistance = true;

public float distance = 5f;

[Parameter("Check Distance", "Whether to check the distance or not")]

[Parameter("Distance", "The maximum distance between targets")]

[Keywords("Hide")]

Markdown

[Example("Sed posuere consectetur est at lobortis)]

Multiple Lines

[Example(@"

This is the first paragraph.

This is also in the first paragraph, right after the previous sentence

This line is part of a new paragraph.

)]

https://gamecreator.io/hub
https://www.markdownguide.org/
https://gamecreator.io/hub

Page 642

The [Dependency(...)] attribute consists of 4 parameters:

Module ID: For example, the ID of the Inventory module is gamecreator.inventory .

Major Version: The minimum major version of the dependency module.

Minor Version: The minimum minor version of the dependency module.

Patch Version: The minimum patch version of the dependency module.

[Dependency("gamecreator.inventory", 1, 5, 2)]

Page 643

I.IV.III Conditions

Page 644

487 Conditions

Conditions are components attached to game objects that, when executed, start checking the conditions in each

Branch, from top to bottom. If all the Conditions of a branch return success, then the Instructions associated to that

branch are executed, and stops checking any further.

If any of the Conditions of a Branch returns false , it skips to the next branch.

In the image above, the Conditions component has just one Branch. This branch checks whether the player is moving

or not. If it happens to move moving while this Conditions component is executed, it will print the "Player is moving"

message on the console.

487.1 Creating Conditions

Right click on the Hierarchy panel and select Game Creator → Visual Scripting → Conditions. A game object named

'Conditions' will appear in the scene with a component of the same name.

Alternatively you can also add the Conditions component to any game object clicking on the Inspector's Add

Component button and searching for Conditions.

To delete a Conditions component, simply click on the component's little cog button and select "Remove Component"

from the dropdown menu.

Example

Deleting Conditions

Page 645

487.2 Adding Branches

To add a new Branch simply click on the Add Branch button. This will create a new branch at the bottom of the

Conditions component. You can then click and drag the = symbol on the right and reorder the branch list.

Remember that top branches have higher priority than lower ones when executed.

All Branches have a Description field, which can be used to more easily identify what that branch does. It has no

gameplay effect.

487.3 Conditions and Instructions

A Branch is composed of a list of Conditions and a list of Instructions. Adding them is as easy as clicking on the

Add Condition and Add Instruction respectively and choose the desired element.

It is important to note that a specific Condition can be negated. For example, if the condition "Is Player Moving" returns

success when the player is moving, but false when it's not, you can check for the opposite effect clicking on the small

green toggle. It will now return true of the player is not moving, and true otherwise.

An empty conditions list will always return success.

Branch Order

Negate Condition

Empty Conditions List

Page 646

I.IV.III.I Conditions

Page 647

488 Conditions

488.1 Sub Categories

Audio

Cameras

Characters

Game Objects

Input

Math

Physics

Platforms

Scenes

Storage

Text

Transforms

Variables

Visual Scripting

Page 648

I.IV.III.I.I AUDIO

Page 649

489 Audio

489.1 Conditions

Is Ambient Playing

Is Music Playing

Is Sound Effect Playing

Is Speech Playing

Is Speech Target Playing

Is Ui Playing

Page 650

490 Is Ambient Playing

490.1 Description

Returns true if the given Ambient sound is playing

490.2 Parameters

Name Description

Audio Clip The audio clip to check

490.3 Keywords

SFX Music Audio Running

Audio » Is Ambient Playing

Page 651

491 Is Music Playing

491.1 Description

Returns true if the given music is playing

491.2 Parameters

Name Description

Audio Clip The audio clip to check

491.3 Keywords

SFX Music Audio Running

Audio » Is Music Playing

Page 652

492 Is Sound Effect Playing

492.1 Description

Returns true if the given sound effect is playing

492.2 Parameters

Name Description

Audio Clip The audio clip to check

492.3 Keywords

SFX Music Audio Running

Audio » Is Sound Effect Playing

Page 653

493 Is Speech Playing

493.1 Description

Returns true if the given Speech sound is playing

493.2 Parameters

Name Description

Audio Clip The audio clip to check

493.3 Keywords

SFX Music Audio Running

Audio » Is Speech Playing

Page 654

494 Is Speech Target Playing

494.1 Description

Returns true if the given target game object is playing any audio clip

494.2 Parameters

Name Description

Target The game object target

494.3 Keywords

SFX Speech Audio Running

Audio » Is Speech Target Playing

Page 655

495 Is UI Playing

495.1 Description

Returns true if the given UI sound is playing

495.2 Parameters

Name Description

Audio Clip The audio clip to check

495.3 Keywords

SFX Music Audio Running

Audio » Is UI Playing

Page 656

I.IV.III.I.II CAMERAS

Page 657

496 Cameras

496.1 Conditions

Is Shot Active

Page 658

497 Is Shot Active

497.1 Description

Returns true if the Camera Shot is assigned to the Main Camera

497.2 Parameters

Name Description

Shot The camera shot

497.3 Keywords

Camera Enabled Assigned Running

Cameras » Is Shot Active

Page 659

I.IV.III.I.III CHARACTERS

Page 660

498 Characters

498.1 Sub Categories

Animation

Busy

Combat

Interaction

Navigation

Properties

Visuals

Page 661

I.IV.III.I.III.I Animation

Page 662

499 Animation

499.1 Conditions

Has State In Layer

Page 663

500 Has State in Layer

500.1 Description

Returns true if the Character has a State running at the specified layer index

500.2 Parameters

Name Description

Layer The layer in which the Character may have a State running

Character The Character instance referenced in the condition

500.3 Keywords

Characters Animation Animate State Play Character Player

Characters » Animation » Has State in Layer

Page 664

I.IV.III.I.III.II Busy

Page 665

501 Busy

501.1 Conditions

Are Arms Available

Are Legs Available

Is Available

Is Busy

Is Humanoid

Is Left Arm Available

Is Left Leg Available

Is Right Arm Available

Is Right Leg Available

Page 666

502 Are Arms Available

502.1 Description

Returns true if the Character's arms are available to start a new action

502.2 Parameters

Name Description

Character The Character instance referenced in the condition

502.3 Keywords

Occupied Available Free Doing Hand Finger Character Player

Characters » Busy » Are Arms Available

Page 667

503 Are Legs Available

503.1 Description

Returns true if the Character's legs are available to start a new action

503.2 Parameters

Name Description

Character The Character instance referenced in the condition

503.3 Keywords

Occupied Available Free Doing Foot Feet Character Player

Characters » Busy » Are Legs Available

Page 668

504 Is Available

504.1 Description

Returns true if the Character is not doing any action and is free to start one

504.2 Parameters

Name Description

Character The Character instance referenced in the condition

504.3 Keywords

Occupied Available Free Doing Character Player

Characters » Busy » Is Available

Page 669

505 Is Busy

505.1 Description

Returns true if the Character doing an action that prevents from starting another one

505.2 Parameters

Name Description

Character The Character instance referenced in the condition

505.3 Keywords

Occupied Available Free Doing Character Player

Characters » Busy » Is Busy

Page 670

506 Is Humanoid

506.1 Description

Returns true if the Character has a humanoid model

506.2 Parameters

Name Description

Character The Character instance referenced in the condition

506.3 Keywords

Human Biped Character Player

Characters » Busy » Is Humanoid

Page 671

507 Is Left Arm Available

507.1 Description

Returns true if the Character's left arm is available to start a new action

507.2 Parameters

Name Description

Character The Character instance referenced in the condition

507.3 Keywords

Occupied Available Free Doing Hand Finger Character Player

Characters » Busy » Is Left Arm Available

Page 672

508 Is Left Leg Available

508.1 Description

Returns true if the Character's left leg is available to start a new action

508.2 Parameters

Name Description

Character The Character instance referenced in the condition

508.3 Keywords

Occupied Available Free Doing Foot Feet Character Player

Characters » Busy » Is Left Leg Available

Page 673

509 Is Right Arm Available

509.1 Description

Returns true if the Character's right arm is available to start a new action

509.2 Parameters

Name Description

Character The Character instance referenced in the condition

509.3 Keywords

Occupied Available Free Doing Hand Finger Character Player

Characters » Busy » Is Right Arm Available

Page 674

510 Is Right Leg Available

510.1 Description

Returns true if the Character's right leg is available to start a new action

510.2 Parameters

Name Description

Character The Character instance referenced in the condition

510.3 Keywords

Occupied Available Free Doing Foot Feet Character Player

Characters » Busy » Is Right Leg Available

Page 675

I.IV.III.I.III.III Combat

Page 676

511 Combat

511.1 Conditions

Is Invincible

Page 677

512 Is Invincible

512.1 Description

Returns true if the Character is Invincible

512.2 Parameters

Name Description

Character The Character instance referenced in the condition

512.3 Keywords

Invincibility Combat Character Player

Characters » Combat » Is Invincible

Page 678

I.IV.III.I.III.IV Interaction

Page 679

513 Interaction

513.1 Conditions

Can Interact

Page 680

514 Can Interact

514.1 Description

Returns true if the Character has any interactive element available

514.2 Parameters

Name Description

Character The Character instance referenced in the condition

514.3 Keywords

Character Button Pick Do Use Pull Press Push Talk Character Player

Characters » Interaction » Can Interact

Page 681

I.IV.III.I.III.V Navigation

Page 682

515 Navigation

515.1 Conditions

Is Airborne

Is Dashing

Is Grounded

Is Idle

Is Moving

Raycast Floor

Page 683

516 Is Airborne

516.1 Description

Returns true if the Character not touching the ground

516.2 Parameters

Name Description

Character The Character instance referenced in the condition

516.3 Keywords

Fly Fall Flail Jump Float Suspend Character Player

Characters » Navigation » Is Airborne

Page 684

517 Is Dashing

517.1 Description

Returns true if the Character is dashing

517.2 Parameters

Name Description

Character The Character instance referenced in the condition

517.3 Keywords

Leap Blink Roll Flash Character Player

Characters » Navigation » Is Dashing

Page 685

518 Is Grounded

518.1 Description

Returns true if the Character touching the floor

518.2 Parameters

Name Description

Character The Character instance referenced in the condition

518.3 Keywords

Floor Stand Land Character Player

Characters » Navigation » Is Grounded

Page 686

519 Is Idle

519.1 Description

Returns true if the Character is not moving

519.2 Parameters

Name Description

Character The Character instance referenced in the condition

519.3 Keywords

Stay Quiet Still Character Player

Characters » Navigation » Is Idle

Page 687

520 Is Moving

520.1 Description

Returns true if the Character is currently in an active moving phase

520.2 Parameters

Name Description

Character The Character instance referenced in the condition

520.3 Keywords

Translate Towards Destination Target Follow Walk Run Character Player

Characters » Navigation » Is Moving

Page 688

521 Raycast Floor

521.1 Description

Returns true if there is an obstacle the specified units below the character

521.2 Parameters

Name Description

Character The Character instance referenced in the condition

521.3 Keywords

Floor Stand Land Ground Obstacle Character Player

Characters » Navigation » Raycast Floor

Page 689

I.IV.III.I.III.VI Properties

Page 690

522 Properties

522.1 Conditions

Can Jump

Compare Foot Phase

Compare Gravity

Compare Height

Compare Mass

Compare Radius

Compare Speed

Is Controllable

Is Dead

Is Player

Jump Force

Terminal Velocity

Page 691

523 Compare Mass

523.1 Description

Returns true if the character has the Can Jump property set to true

523.2 Parameters

Name Description

Character The Character instance referenced in the condition

523.3 Keywords

Active Enabled Leap Hop Character Player

Characters » Properties » Can Jump

Page 692

524 Compare Foot Phase

524.1 Description

Returns true if the chosen foot phase is currently grounded

524.2 Parameters

Name Description

Character The Character instance referenced in the condition

524.3 Example 1

Phases are the name given to the feet system that detects when a limb is grounded

524.4 Example 2

Characters can have up to 4 phases

524.5 Example 3

By default, humanoid characters assign the 'Phase 0' value to the left foot, and 'Phase 1' to the right foot. This can be

customized in the Footsteps section

524.6 Keywords

Feet Foot Grounded Character Player

Characters » Properties » Compare Foot Phase

Page 693

525 Compare Gravity

525.1 Description

Returns true if the comparison between a number and the Character's gravity is satisfied

525.2 Parameters

Name Description

Character The Character instance referenced in the condition

525.3 Keywords

Force Vertical Character Player

Characters » Properties » Compare Gravity

Page 694

526 Compare Height

526.1 Description

Returns true if the comparison between a number and the Character's height is satisfied

526.2 Parameters

Name Description

Character The Character instance referenced in the condition

526.3 Keywords

Length Long Character Player

Characters » Properties » Compare Height

Page 695

527 Compare Mass

527.1 Description

Returns true if the comparison between a number and the Character's mass is satisfied

527.2 Parameters

Name Description

Character The Character instance referenced in the condition

527.3 Keywords

Weight Character Player

Characters » Properties » Compare Mass

Page 696

528 Compare Radius

528.1 Description

Returns true if the comparison between a number and the Character's radius is satisfied

528.2 Parameters

Name Description

Character The Character instance referenced in the condition

528.3 Keywords

Diameter Width Fat Skin Space Character Player

Characters » Properties » Compare Radius

Page 697

529 Compare Speed

529.1 Description

Returns true if the comparison between a number and the Character's speed is satisfied

529.2 Parameters

Name Description

Character The Character instance referenced in the condition

529.3 Keywords

Velocity Travel Movement Walk Run Step Character Player

Characters » Properties » Compare Speed

Page 698

530 Is Controllable

530.1 Description

Returns true if the Player unit of the Character is controllable

530.2 Parameters

Name Description

Character The Character instance referenced in the condition

530.3 Keywords

Control Character Player Character Player

Characters » Properties » Is Controllable

Page 699

531 Is Dead

531.1 Description

Returns true if the character has been killed

531.2 Parameters

Name Description

Character The Character instance referenced in the condition

531.3 Keywords

Kill Kaput Character Player

Characters » Properties » Is Dead

Page 700

532 Is Player

532.1 Description

Returns true if the Character is marked as a Player

532.2 Parameters

Name Description

Character The Character instance referenced in the condition

532.3 Keywords

Control Character Character Player

Characters » Properties » Is Player

Page 701

533 Compare Jump Force

533.1 Description

Returns true if the comparison between a number and the Character's jump force is satisfied

533.2 Parameters

Name Description

Character The Character instance referenced in the condition

533.3 Keywords

Hop Leap Character Player

Characters » Properties » Jump Force

Page 702

534 Compare Terminal Velocity

534.1 Description

Returns true if the comparison between a number and the Character's terminal velocity is satisfied

534.2 Parameters

Name Description

Character The Character instance referenced in the condition

534.3 Keywords

Max Fall Vertical Down Character Player

Characters » Properties » Terminal Velocity

Page 703

I.IV.III.I.III.VII Visuals

Page 704

535 Visuals

535.1 Conditions

Has Prop Attached

Page 705

536 Has Prop Attached

536.1 Description

Returns true if the Character has a Prop attached to the specified bone

536.2 Parameters

Name Description

Bone The bone that has the prop attached to

Character The Character instance referenced in the condition

536.3 Keywords

Characters Holds Grab Draw Pull Take Object Character Player

Characters » Visuals » Has Prop Attached

Page 706

I.IV.III.I.IV GAME OBJECTS

Page 707

537 Game Objects

537.1 Conditions

Compare Game Objects

Compare Layer

Compare Tag

Does Component Exist

Does Game Object Exist

Is Component Enabled

Is Game Object Active

Page 708

538 Compare Game Objects

538.1 Description

Returns true if the game object is the same as another one

538.2 Parameters

Name Description

Game Object The game object instance used in the comparison

Compare To The game object instance that is compared against

538.3 Keywords

Same Equal Exact Instance

Game Objects » Compare Game Objects

Page 709

539 Compare Layer

539.1 Description

Returns true if the game object belongs to any of the layer mask values

539.2 Parameters

Name Description

Game Object The game object instance used in the condition

Layer Mask A bitmask of Layer values

539.3 Keywords

Mask Physics Belong Has

Game Objects » Compare Layer

Page 710

540 Compare Tag

540.1 Description

Returns true if the game object is tagged with a concrete name

540.2 Parameters

Name Description

Game Object The game object instance used in the condition

Tag The Tag name checked against the game object

540.3 Keywords

Belong Has Is

Game Objects » Compare Tag

Page 711

541 Does Component Exist

541.1 Description

Returns true if the game object has the component attached

541.2 Parameters

Name Description

Game Object The game object instance used in the condition

Component The component type that is searched

541.3 Keywords

Null Scene Lives

Game Objects » Does Component Exist

Page 712

542 Does Game Object Exist

542.1 Description

Returns true if the game object reference is not null

542.2 Parameters

Name Description

Game Object The game object instance used in the condition

542.3 Keywords

Null Scene Lives

Game Objects » Does Game Object Exist

Page 713

543 Is Component Enabled

543.1 Description

Returns true if the game object has the component enabled

543.2 Parameters

Name Description

Game Object The game object instance used in the condition

Component The component type checked

543.3 Keywords

Null Active

Game Objects » Is Component Enabled

Page 714

544 Is Game Object Active

544.1 Description

Returns true if the game object reference exists and is active

544.2 Parameters

Name Description

Game Object The game object instance used in the condition

544.3 Keywords

Null Scene Enabled

Game Objects » Is Game Object Active

Page 715

I.IV.III.I.V INPUT

Page 716

545 Input

545.1 Conditions

Is Input Held Down

Is Input Pressed

Is Input Released

Is Key Held Down

Is Key Pressed

Is Key Released

Is Mouse Held Down

Is Mouse Pressed

Is Mouse Released

Page 717

546 Is Input Held Down

546.1 Description

Returns true while the Input Action asset with a button behavior is being pressed

546.2 Parameters

Name Description

Input A reference to the Input Action asset with map and action name

546.3 Keywords

Unity Button While Hold Press Input Action System Map

Input » Is Input Held Down

Page 718

547 Is Input Pressed

547.1 Description

Returns true if the Input Action asset with a button behavior is pressed during this frame

547.2 Parameters

Name Description

Input A reference to the Input Action asset with map and action name

547.3 Keywords

Unity Button Down Input Action System Map

Input » Is Input Pressed

Page 719

548 Is Input Released

548.1 Description

Returns true if the Input Action asset with a button behavior is released during this frame

548.2 Parameters

Name Description

Input A reference to the Input Action asset with map and action name

548.3 Keywords

Unity Button Up Input Action System Map

Input » Is Input Released

Page 720

549 Is Key Held Down

549.1 Description

Returns true if the keyboard key is being held down this frame

549.2 Parameters

Name Description

Key The Keyboard key that is checked

549.3 Keywords

Button Active Down Press

Input » Is Key Held Down

Page 721

550 Is Key Pressed

550.1 Description

Returns true if the keyboard key is pressed during this frame

550.2 Parameters

Name Description

Key The Keyboard key that is checked

550.3 Keywords

Button Down

Input » Is Key Pressed

Page 722

551 Is Key Released

551.1 Description

Returns true if the keyboard key is released during this frame

551.2 Parameters

Name Description

Key The Keyboard key that is checked

551.3 Keywords

Button Up

Input » Is Key Released

Page 723

552 Is Mouse Held Down

552.1 Description

Returns true if the mouse button is being held down

552.2 Parameters

Name Description

Button The Mouse button that is checked

552.3 Keywords

Key Up Click Cursor

Input » Is Mouse Held Down

Page 724

553 Is Mouse Pressed

553.1 Description

Returns true if the mouse button is pressed during this frame

553.2 Parameters

Name Description

Button The Mouse button that is checked

553.3 Keywords

Key Down Cursor

Input » Is Mouse Pressed

Page 725

554 Is Mouse Released

554.1 Description

Returns true if the mouse button is released during this frame

554.2 Parameters

Name Description

Button The Mouse button that is checked

554.3 Keywords

Key Up Click Cursor

Input » Is Mouse Released

Page 726

I.IV.III.I.VI MATH

Page 727

555 Math

555.1 Sub Categories

Arithmetic

Boolean

Geometry

Page 728

I.IV.III.I.VI.I Arithmetic

Page 729

556 Arithmetic

556.1 Conditions

Compare Decimal

Compare Integer

Page 730

557 Compare Decimal

557.1 Description

Returns true if a comparison between two decimal values is satisfied

557.2 Parameters

Name Description

Value The decimal value that is being compared

Comparison The comparison operation performed between both values

Compare To The decimal value that is compared against

557.3 Keywords

Number Float Comma Equals Different Bigger Greater Larger Smaller

Math » Arithmetic » Compare Decimal

Page 731

558 Compare Integer

558.1 Description

Returns true if a comparison between two integer values is satisfied

558.2 Parameters

Name Description

Value The integer value that is being compared

Comparison The comparison operation performed between both values

Compare To The integer value that is compared against

558.3 Keywords

Number Whole Equals Different Bigger Greater Larger Smaller

Math » Arithmetic » Compare Integer

Page 732

I.IV.III.I.VI.II Boolean

Page 733

559 Boolean

559.1 Conditions

Always False

Always True

Compare Boolean

Page 734

560 Always False

560.1 Description

Always returns false

560.2 Keywords

Boolean No Contradiction

Math » Boolean » Always False

Page 735

561 Always True

561.1 Description

Always returns true

561.2 Keywords

Boolean Yes Tautology

Math » Boolean » Always True

Page 736

562 Compare Bool

562.1 Description

Returns true if a comparison between two boolean values is satisfied

562.2 Parameters

Name Description

Value The boolean value that is being compared

Comparison The comparison operation performed between both values

Compare To The boolean value that is compared against

562.3 Keywords

Boolean

Math » Boolean » Compare Boolean

Page 737

I.IV.III.I.VI.III Geometry

Page 738

563 Geometry

563.1 Conditions

Compare Direction

Compare Distance Flat

Compare Distance Vertical

Compare Distance

Compare Point

Page 739

564 Compare Direction

564.1 Description

Returns true if a comparison between two direction values is satisfied

564.2 Parameters

Name Description

Value The direction value that is being compared

Comparison The comparison operation performed between both values

Compare To The direction value that is compared against

564.3 Keywords

Towards Vector Magnitude Length Equals Different Greater Larger Smaller

Math » Geometry » Compare Direction

Page 740

565 Compare Distance Flat

565.1 Description

Returns true if a comparison of the flat XZ distance between two points is satisfied

565.2 Parameters

Name Description

Point A The first operand that represents a point in space

Point B The second operand that represents a point in space

Comparison The comparison operation performed between both values

Distance The distance value compared against

565.3 Keywords

Position Vector Magnitude Length Equals Different Greater Larger Smaller

Math » Geometry » Compare Distance Flat

Page 741

566 Compare Distance Vertical

566.1 Description

Returns true if a comparison of the vertical distance between two points is satisfied

566.2 Parameters

Name Description

Point A The first operand that represents a point in space

Point B The second operand that represents a point in space

Comparison The comparison operation performed between both values

Distance The distance value compared against

566.3 Keywords

Position Vector Magnitude Length Equals Different Greater Larger Smaller

Math » Geometry » Compare Distance Vertical

Page 742

567 Compare Distance

567.1 Description

Returns true if a comparison of the distance between two points is satisfied

567.2 Parameters

Name Description

Point A The first operand that represents a point in space

Point B The second operand that represents a point in space

Comparison The comparison operation performed between both values

Distance The distance value compared against

567.3 Keywords

Position Vector Magnitude Length Equals Different Greater Larger Smaller

Math » Geometry » Compare Distance

Page 743

568 Compare Point

568.1 Description

Returns true if a comparison between two points in space is satisfied

568.2 Parameters

Name Description

Value The point in space that is being compared

Comparison The comparison operation performed between both values

Compare To The point in space that is compared against

568.3 Keywords

Position Vector Magnitude Length Equals Different Greater Larger Smaller

Math » Geometry » Compare Point

Page 744

I.IV.III.I.VII PHYSICS

Page 745

569 Physics

569.1 Conditions

Check Box 2D

Check Box 3D

Check Capsule

Check Character 3D Fits

Check Circle

Check Sphere

Is Kinematic

Is Sleeping

Raycast 2D

Raycast 3D

Page 746

570 Check Box 2D

570.1 Description

Returns true if casting a 2D box at a position collides with something

570.2 Parameters

Name Description

Position The scene position where the box's center is cast. Z axis is ignored

Size Size of each side's extension along its local axis

Angle Clock-wise rotation measured in degrees

Layer Mask A bitmask that skips any objects that don't belong to the list

570.3 Example 1

Note that this Instruction uses Unity's 2D physics engine. It won't collide with any 3D objects

570.4 Keywords

Check Collide Touch Suit Square Cube 2D

Physics » Check Box 2D

Page 747

571 Check Box 3D

571.1 Description

Returns true if casting a 3D box at a position collides with something

571.2 Parameters

Name Description

Position The scene position where the box's center is cast

Rotation The rotation of the cube cast in world space

Half Extents Half size of the cube that extents along its local axis

Layer Mask A bitmask that skips any objects that don't belong to the list

571.3 Example 1

Note that this Instruction uses Unity's 3D physics engine. It won't collide with any 2D objects

571.4 Keywords

Check Collide Touch Suit Square Cube 3D

Physics » Check Box 3D

Page 748

572 Check Capsule

572.1 Description

Returns true if casting a capsule at a position collides with something

572.2 Parameters

Name Description

Position The scene position where the capsule's center is cast

Height The height of the capsule in Unity units

Radius The radius of the capsule in Unity units

Layer Mask A bitmask that skips any objects that don't belong to the list

572.3 Example 1

Note that this Instruction uses Unity's 3D physics engine. It won't collide with any 2D objects

572.4 Keywords

Check Collide Touch Suit Character Fit 3D

Physics » Check Capsule

Page 749

573 Check Character 3D Fits

573.1 Description

Returns true if the character fits with the new radius and height values

573.2 Parameters

Name Description

Character The character to check

Height The height of the character in Unity units

Radius The radius of the character in Unity units

Layer Mask A bitmask that skips any objects that don't belong to the list

573.3 Example 1

Note that this Instruction uses Unity's 3D physics engine. It won't collide with any 2D objects

573.4 Keywords

Check Collide Capsule Touch Suit Character Fit 3D

Physics » Check Character 3D Fits

Page 750

574 Check Circle

574.1 Description

Returns true if casting a circle at a position doesn't collide with anything

574.2 Parameters

Name Description

Position The scene position where the circle's center is cast. Z axis is ignored

Radius The radius of the circle in Unity units

Layer Mask A bitmask that skips any objects that don't belong to the list

574.3 Example 1

Note that this Instruction uses Unity's 2D physics engine. It won't collide with any 3D objects

574.4 Keywords

Check Collide Touch Suit Sphere Circumference Round 2D

Physics » Check Circle

Page 751

575 Check Sphere

575.1 Description

Returns true if casting a sphere at a position collides with something

575.2 Parameters

Name Description

Position The scene position where the sphere's center is cast

Radius The radius of the sphere in Unity units

Layer Mask A bitmask that skips any objects that don't belong to the list

575.3 Example 1

Note that this Instruction uses Unity's 3D physics engine. It won't collide with any 2D objects

575.4 Keywords

Check Collide Touch Suit Circle Circumference Round 3D

Physics » Check Sphere

Page 752

576 Is Kinematic

576.1 Description

Returns true if the game object's Rigidbody or Rigidbody2D is marked as Kinematic

576.2 Parameters

Name Description

Game Object The game object instance with a Rigidbody or Rigidbody2D

576.3 Keywords

Affect Physics Force Rigidbody

Physics » Is Kinematic

Page 753

577 Is Sleeping

577.1 Description

Returns true if the game object's Rigidbody or Rigidbody2D is sleeping

577.2 Parameters

Name Description

Game Object The game object instance with a Rigidbody or Rigidbody2D

577.3 Keywords

Affect Physics Force Rigidbody Awake

Physics » Is Sleeping

Page 754

578 Raycast 2D

578.1 Description

Returns true if there any object between two positions in 2D space

578.2 Parameters

Name Description

Source The scene position where the raycast originates

Target The targeted position where the raycast ends

Layer Mask A bitmask that skips any objects that don't belong to the list

578.3 Example 1

Note that this Instruction uses Unity's 2D physics engine. It won't collide with any 3D objects

578.4 Keywords

Check Collide Linecast See 2D

Physics » Raycast 2D

Page 755

579 Raycast 3D

579.1 Description

Returns true if there's an object between two positions

579.2 Parameters

Name Description

Source The scene position where the raycast originates

Target The targeted position where the raycast ends

Layer Mask A bitmask that skips any objects that don't belong to the list

579.3 Example 1

Note that this Instruction uses Unity's 3D physics engine. It won't collide with any 2D objects

579.4 Keywords

Check Collide Linecast See 3D

Physics » Raycast 3D

Page 756

I.IV.III.I.VIII PLATFORMS

Page 757

580 Platforms

580.1 Conditions

Check Platform

Is Batch Mode

Is Console

Is Editor

Is Mobile

Page 758

581 Check Platform

581.1 Description

Check if the running platform matches the selected one

Platforms » Check Platform

Page 759

582 Is Batch mode

582.1 Description

Returns true if the running platform is in batch mode (no interface)

582.2 Keywords

Server

Platforms » Is Batch mode

Page 760

583 Is Console

583.1 Description

Returns true if the running platform is a console

583.2 Keywords

PS4 PS5 Switch XBox Deck

Platforms » Is Console

Page 761

584 Is Editor

584.1 Description

Returns true if the running platform is the Unity Editor

584.2 Keywords

Unity

Platforms » Is Editor

Page 762

585 Is Mobile

585.1 Description

Returns true if the running platform is a smartphone or tablet

585.2 Keywords

Smartphone Tablet iOS Android

Platforms » Is Mobile

Page 763

I.IV.III.I.IX SCENES

Page 764

586 Scenes

586.1 Conditions

Is Scene Loaded

Page 765

587 Is Scene Loaded

587.1 Description

Returns true if the scene has been loaded

587.2 Parameters

Name Description

Scene The Unity Scene reference used in the condition

Scenes » Is Scene Loaded

Page 766

I.IV.III.I.X STORAGE

Page 767

588 Storage

588.1 Conditions

Has Save At Slot

Has Save

Page 768

589 Has Save at Slot

589.1 Description

Returns true if there is a saved game at the specified slot

589.2 Keywords

Game Load Continue Resume Can Is

Storage » Has Save at Slot

Page 769

590 Has Save

590.1 Description

Returns true if there is at least one saved game

590.2 Keywords

Game Load Continue Resume Can Is

Storage » Has Save

Page 770

I.IV.III.I.XI TEXT

Page 771

591 Text

591.1 Conditions

Text Contains

Text Equals

Page 772

592 Text Contains

592.1 Description

Returns true if the second text string occurs in the first one

592.2 Parameters

Name Description

Text The text string

Substring The text string contained in Text

592.3 Keywords

String Char Sub

Text » Text Contains

Page 773

593 Text Equals

593.1 Description

Returns true if two text Strings are equal

593.2 Parameters

Name Description

Text 1 The first text string to compare

Text 2 The second text string to compare

593.3 Keywords

String Char

Text » Text Equals

Page 774

I.IV.III.I.XII TRANSFORMS

Page 775

594 Transforms

594.1 Conditions

Child Count

Is Child Of

Is Sibling Of

Page 776

595 Child Count

595.1 Description

Compares the amount of direct children of a game object

595.2 Parameters

Name Description

Target The children amount of this game object instance

Comparison The comparison operation between the child count and a value

Compare To The second value compared

595.3 Keywords

Transform Hierarchy Descendant Ancestor Parent Father Amount

Transforms » Child Count

Page 777

596 Is Child Of

596.1 Description

Returns true if the game object is the parent of the other one

596.2 Parameters

Name Description

Child The game object instance further down in the hierarchy of the parent

Parent The game object instance that is higher in the hierarchy

596.3 Keywords

Transform Hierarchy Descendant Ancestor Parent Father Mother

Transforms » Is Child Of

Page 778

597 Is Sibling Of

597.1 Description

Returns true if the game object shares the same parent as the other one

597.2 Parameters

Name Description

Sibling A The game object instance compared

Sibling B Another game object instance compared

597.3 Keywords

Transform Hierarchy Ancestor Brother Sister

Transforms » Is Sibling Of

Page 779

I.IV.III.I.XIII VARIABLES

Page 780

598 Variables

598.1 Conditions

List Is Empty

Page 781

599 List is Empty

599.1 Description

Checks whether a List Variable is empty or not

599.2 Parameters

Name Description

List Variables The Local or Global List Variable to check

599.3 Keywords

Size Length Any Local Global Variable

Variables » List is Empty

Page 782

I.IV.III.I.XIV VISUAL SCRIPTING

Page 783

600 Visual Scripting

600.1 Conditions

Conditions As And

Run Conditions As Or

Page 784

601 Conditions as AND

601.1 Description

Returns true only if all the Conditions from the list are True

601.2 Keywords

& All Sequence

Visual Scripting » Conditions as AND

Page 785

602 Conditions as OR

602.1 Description

Returns true if at least one of the Conditions from the list is True

602.2 Keywords

| One Selector

Visual Scripting » Run Conditions as OR

Page 786

603 Custom Conditions

Game Creator allows to very easily create custom Conditions.

This section assumes you have some programming knowledge. If you don't know how to code you might be interested

in checking out the Game Creator Hub page. Programmers altrusitically create custom Conditions for others to

download and use in their project.

603.1 Creating a Condition

The easiest way to create an Condition C# script is to right click on your Project panel and select Create → Game

Creator → Developer → C# Condition. This will create a template script with the boilerplate structure:

603.1.1 Anatomy of an Instruction

A Condition is a class that inherits from the Condition super class. The abstract Run(...) method is the entry

point of a Condition's execution, which is automatically called. This method must always return true if it's

successful, or false otherwise.

The Run(...) method has a single parameter of type Args , which is a helper class that contains a reference to the

game object that initiated the call (args.Self) and the targeted game object (args.Target), if any.

603.1.2 Decoration & Documentation

It is highly recommended to document and decorate the Condition so it's easier to find and use. It is done using

class-type attributes that inform Game Creator of the quirks of this particular condition.

For example, to set the title of a condition to "Hello World", use the [Title(string name)] attribute right above the

class definition:

Programming Knowledge Required

using System;

using GameCreator.Runtime.Common;

using GameCreator.Runtime.VisualScripting;

[Serializable]

public class MyCondition : Condition

{

protected override bool Run(Args args)

{

return true;

}

}

https://gamecreator.io/hub

Page 787

603.1.2.1 Title

The title of the Condition. If this attribute is not provided, the title will be a beautified version of the class name.

603.1.2.2 Description

A description of what the Condition does. This is both used in the floating window documentation, as well as the

description text when uploading a Condition to the Game Creator Hub.

603.1.2.3 Image

The [Image(...)] attribute changes the default icon of the Condition for one of the default ones. It consists of 2

parameters:

Icon [Type]: a Type class of an IIcon derived class. Game Creator comes packed with a lot of icons although

you can also create your own.

Color [Color]: The color of the icon. Uses Unity's Color class.

For example, one of the icons included is the "Solid Cube" icon. To display a red solid cube as the icon of the

condition, use the following attribute:

603.1.2.4 Category

A sequence of sub-categories organized using the slash (/) character. This attribute helps keep the Conditions

organized when the dropdown list is displayed.

The example above will display the Condition under the sub directory Category → Sub Category → Name.

using System;

using GameCreator.Runtime.Common;

using GameCreator.Runtime.VisualScripting;

[Title("Hello World")]

[Serializable]

public class MyCondition : Condition

{

protected override bool Run(Args args)

{

return true;

}

}

[Title("Title of Condition")]

[Description("Lorem Ipsum dolor etiam porta sem magna mollis")]

[Image(typeof(IconCubeSolid), Color.red)]

[Category("Category/Sub Category/Name")]

https://gamecreator.io/hub

Page 788

603.1.2.5 Version

A semmantic version to keep track of the development of this Condition. It's important to note that when updating a

Condition to the Game Creator Hub, the version number must always be higher than the one on the server.

The semmantic version follows the standard Major Version, Minor Version, Patch Version. To know more about how

semmantic versioning works, read the following page: https://semver.org.

603.1.2.6 Parameters

When a Condition has exposed fields in the Inspector, it's a good idea to document what these do. You can add as

many [Parameter(name, description)] attributes as exposed fields has.

For example, if the Condition has these two fields:

You can document those fields adding:

603.1.2.7 Keywords

Keywords are strings that help the fuzzy finder more easily search for a condition. For example, the "Is Character

Moving" condition doesn't reference the word "idle" or "walk" anywhere in its documentation. However, these words

are very likely to reference this condition when the user types them in the search box.

603.1.2.8 Example

The Example attribute allows to display a text as an example of use of this Condition. There can be more than one

[Example(...)] attribute per condition. This is particularly useful when uploading conditions on the Game Creator

Hub.

It is recommended to use Markdown notation when writing examples

[Version(1, 5, 3)]

public bool condition1 = true;

public bool condition2 = false;

[Parameter("Condition 1", "First condition value to check")]

[Parameter("Condition 2", "Second condition value to check")]

[Keywords("Idle", "Walk", "Run")]

Markdown

[Example("Sed posuere consectetur est at lobortis)]

https://gamecreator.io/hub
https://semver.org/
https://gamecreator.io/hub
https://gamecreator.io/hub
https://www.markdownguide.org/

Page 789

You can use the @ character in front of a string to break the example text in multiple lines. To create a new paragraph,

simply add two new lines. For example:

603.1.2.9 Dependency

This attribute is optional and only used in the Game Creator Hub. If this Condition uses some particular feature of a

specific module, it will first check if the user downloading this condition has that module installed. If it does not, it

will display an error message and forbid downloading it. This is useful to avoid throwing programming errors.

The [Dependency(...)] attribute consists of 4 parameters:

Module ID: For example, the ID of the Inventory module is gamecreator.inventory .

Major Version: The minimum major version of the dependency module.

Minor Version: The minimum minor version of the dependency module.

Patch Version: The minimum patch version of the dependency module.

Multiple Lines

[Example(@"

This is the first paragraph.

This is also in the first paragraph, right after the previous sentence

This line is part of a new paragraph.

)]

[Dependency("gamecreator.inventory", 1, 5, 2)]

https://gamecreator.io/hub

Page 790

I.IV.IV Hotspots

Page 791

604 Hotspots

Hotspots are components attached to game objects that don't have any direct impact on gameplay. Instead, they

help the user understand what's interactive and what is not. For example, highlighting a specific object when the

player character is nearby, making the head turn towards an important object and so on.

Triggers are usually placed along side with Hotspot components. One deals with the interaction itself, while the other

hints the player about the Trigger being an interactive object.

604.1 How it works

A Hotspot consists of a Target field and a Mode, which determine the object being followed and when it reacts.

There are 4 possible modes:

Radius: Displays an extra field with a numeric value. The Hotspot will react when the target is inside its radius.

On Interaction Focus: The Hotspot will react whenever the Target's Interaction system focuses on the Hotspot.

On Interaction Reach: The Hotspot will react whenever the Target's Interaction system has the Hotspot is within

reach but isn't focused on it.

Always Active: The Hotspot will always react regardless of the distance to the Target.

These two modes require the Target to be a Character component. To know more about how the Interaction system

works, see the Interaction section.

Trigger + Hotspot

On Interaction Focus & Reach

Page 792

Selecting a game object with a Hotspot component with a Radius mode will display in the scene a visual

representation of the distance at which the target is considered close enough to activate it.

On playmode, the red gizmo appears in a much lighter color. If the targeted object activates the Hotspot, the Hotspot's

gizmo will change to green, to indicate the Hotspot is active.

The Hotspot distance check doesn't use Unity's Phyics engine because it would force both the Hotspot and the

targeted object to have a Collider component attached to them. Instead it simply checks the distance between the

center of the hotspot and the targeted game object.

604.2 Creating Hotspots

There are two ways to create a Hotspot object. One is to create an object that contains a Hotspot component, by

right clicking on the Hierarchy panel and selecting Game Creator → Visual Scripting → Hotspot. This creates a scene

object with the component attached to it.

However, an Actions component can also be added to any game object. Simply click on any game object's Add

Component button and type Actions.

Debugging

No Phyics Engine

Page 793

To delete an Actions component, simply click on the component's little cog button and select "Remove Component"

from the dropdown menu.

604.3 Adding Spots

Spots are individual elements that highlight something specific and are evaluated from top to bottom.

To add a new Spot click on the Add Spot button and choose the desired one from the dropdown list. Note that Spots

are evaluated from top to bottom. There can be two spots of the same type, but if they both overlap, the last one will

override the effect.

Deleting Actions

Page 794

I.IV.IV.I Spots

Page 795

605 Spots

605.1 Sub Categories

Audio

Characters

Game Objects

Materials

Ui

Page 796

I.IV.IV.I.I AUDIO

Page 797

606 Audio

606.1 Spots

Play Sound

Page 798

607 Play Sound

607.1 Description

Plays a User Interface sound effect when the Hotspot is activated or deactivated

607.2 Keywords

Audio Sounds

Audio » Play Sound

Page 799

I.IV.IV.I.II CHARACTERS

Page 800

608 Characters

608.1 Spots

Look At

Page 801

609 Look At

609.1 Description

Makes the Character look at the center of the Hotspot when it's activatedand smoothly look away when it's

deactivated

Characters » Look At

Page 802

I.IV.IV.I.III GAME OBJECTS

Page 803

610 Game Objects

610.1 Spots

Activate Object

Instantiate Prefab

Page 804

611 Activate Object

611.1 Description

Activates a game object scene instance when the Hotspot is enabled and deactivates it when the Hotspot is

disabled

Game Objects » Activate Object

Page 805

612 Instantiate Prefab

612.1 Description

Creates or Activates a prefab game object when the Hotspot is enabled and deactivates it when the Hotspot is

disabled

Game Objects » Instantiate Prefab

Page 806

I.IV.IV.I.IV MATERIALS

Page 807

613 Materials

613.1 Spots

Change Material

Page 808

614 Change Material

614.1 Description

Changes the Material depending on whether the Hotspot is active or not

614.2 Keywords

Material Color Shader

Materials » Change Material

Page 809

I.IV.IV.I.V UI

Page 810

615 Ui

615.1 Spots

Change Text

Cursor

Show Floating Text

Page 811

616 Change Text

616.1 Description

Changes the chosen Text value

UI » Change Text

Page 812

617 Cursor

617.1 Description

Changes the cursor image when hovering the Hotspot

UI » Cursor

Page 813

618 Show Floating Text

618.1 Description

Displays a text in a world-space canvas when the Hotspot is enabled and hides it when is disabled. If no Prefab is

provided, a default UI is displayed

UI » Show Floating Text

Page 814

I.V Variables

Page 815

619 Variables

Variables are data containers that allow to dynamically change their value and let the game keep track of the player's

progress.

A very simple use case of Variables is keeping track of the player's score. Let's say we have a named variable called

score and has an initial value of 0. Every time the player picks up a star, the score variable is incremented and its value

is displayed.

619.1 Types of Variables

Game Creator has two types of variables:

619.1.1 Name Variables

Are identified by their unique name. For example, the name score can reference a numeric variable that keeps track

of the player's score value.

47"score"

619.1.2 List Variables

Are identified by their 0-based index. Think of them as a collection of values, placed one after another. For example,

to access the first value, use the index 0. To access the second position, use the index 1, etc...

Note all values of a List Variable are of a particular type.

Example

Page 816

Enemy #1Index 2

Enemy #7Index 1

Enemy #3Index 0

Enemy #4Index 3

As a rule of thumb, it is recommended the use of Name Variables. List Variables are useful when you have an unknown

number of objects to choose from. For example, when locking on an enemy from a group that surrounds the player.

619.2 Scope of Variables

Variables can either be local or global.

619.2.1 Local Variables

Local Variables are bound to a particular scene and can't be used outside of it.

619.2.2 Global Variables

On the other hand, Global Variables can be queried and modified from any scene.

Both Global Variables and Local Variables can be List or Name based.

619.3 Value Types

All Variables have an initial value assigned to them that can be modifed at runtime. By default, Game Creator comes

with a limited number of types to choose from, but other modules might increment the amount available.

Name or List?

Types

Page 817

Number: Stores numeric values. Both decimal and integers.

String: Stores text-based characters.

Boolean: Can only store two values: true or false.

Vector 3: Stores an (x,y,z) vector value

Color: Stores an RGBA color value. Can also contain HDR information.

Texture: Stores a reference to a Texture asset.

Sprite: Stores a reference to a Sprite asset.

Game Object: Stores a reference to a game object.

It is important to note that not all data types can be saved between play-sessions. Textures, Sprites and Game Objects

and not primitive types and thus, they can't be serialized at runtime.

619.4 Nested Access

Nested Access is a concept that allows jumping between different variables using one single command.

For example, let's say the Player object has a Local Named Variable called target of type Game Object. This game

object is dynamic but let's say the targeted object will always have another Local Named Variable called health

that contains how many hit points the enemy has.

The health variable can be accessed using the key target/health (with a slash). This means: Get the variable

value health that the variable target points to.

Saving Values

Page 818

620 Global Name Variables

Global Name Variables are variables identified by a unique string of characters that live outside the scene and can

be accessed and modified from anywhere.

620.1 Creating a Global Name Variable

To create a Global Name Variable, right click on the Project Panel and select Create → Game Creator → Variables →

Name Variables. A new asset will appear in the project panel, which can be used to define each of the variables

contained within.

Note that two Global Variables can't have the same unique ID. Otherwise they'll override each other's values. To

generate a new unique ID, expand the ID field and click the "Regenerate" button.

620.2 Adding new entries

To add a new variable entry, type the name of the variable on the creation field and press enter (or click on the little

[+] button).

The name of a variable can be modified, as well as its value type. The Value field also contains the starting value of

this particular variable entry.

Conflicting ID

Page 819

Values can be saved between play sessions to later be restored when loading a game. Disabling the save option will

make all variables keep the initial value as their starting value, even after loading a previously saved game.

Save & Load

Page 820

621 Global List Variables

Global List Variables are variables identified by their numberic index value and can be accessed from anywhere.

621.1 Creating a Global List Variable

To create a Global List Variable, right click on the Project Panel and select Create → Game Creator → Variables → List

Variables. A new asset will appear in the project panel, which can be used to define the collection of variables.

Note that two Global Variables can't have the same unique ID. Otherwise they'll override each other's values. To

generate a new unique ID, expand the ID field and click the "Regenerate" button.

Vales can be saved between play sessions to later be restored when loading a game. Disabling the save option will

make all variables keep the initial value as their starting value, even after loading a previously saved game.

Conflicting ID

Save & Load

Page 821

622 Local Name Variables

Local Name Variables are variables identified by a unique string of characters that live inside a scene and can only

reference objects that are contained inside this scene.

622.1 Creating a Local Name Variable

To create a Local Name Variable, right click on the Hierarchy Panel_ and select Game Creator → Variables → Name

Variables. A new game object will appear with the Local Name Variables component. Alternatively you can also add

this component to any existing game object.

Note that two Local Variables can't have the same unique ID. Otherwise they'll override each other's values. To generate

a new unique ID, expand the ID field and click the "Regenerate" button.

622.2 Adding new entries

To add a new variable entry, type the name of the variable on the creation field and press enter (or click on the little

[+] button).

The name of a variable can be modified, as well as its value type. The Value field als contains the starting value of

this particular variable entry.

Conflicting ID

Page 822

Vales can be saved between play sessions to later be restored when loading a game. Disabling the save option will

make all variables keep the initial value as their starting value, even after loading a previously saved game.

Save & Load

Page 823

623 Local List Variables

Local List Variables are variables identified by their numberic index value and can only be accessed from the scene

they are part of.

623.1 Creating a Local List Variable

To create a Local List Variable, right click on the Hierarchy Panel_ and select Create → Game Creator → Variables →

List Variables. A new game object with the component will appear in the scene and hierarchy. Alternatively, you can

also add the Local List Variables component to any existing game object.

Note that two Local Variables can't have the same unique ID. Otherwise they'll override each other's values. To generate

a new unique ID, expand the ID field and click the "Regenerate" button.

Vales can be saved between play sessions to later be restored when loading a game. Disabling the save option will

make all variables keep the initial value as their starting value, even after loading a previously saved game.

Conflicting ID

Save & Load

Page 824

I.VI Advanced

Page 825

624 Advanced

Game Creator includes a collection of tools used throughout the entire ecosystem. This section briefly goes over all

of them and provides a link to each tool's page, where they are explained in-depth, with use cases and examples.

This section of the Documentation assumes you are familiar with Unity and Game Creator. Some sections may require

you to also have some coding knowledge.

624.1 Audio

Game Creator has a 4 channel audio system that makes it very easy to change volume settings and play both

diegetic and non-diegetic sound effects.

Learn about Audio

624.2 Signals

Communication between game objects is handled using the visual scripting tools, such as Triggers and Actions.

However, there may be cases where the developer needs to respond to more tailored events that don't exist in Game

Creator.

Advanced Level

Page 826

The Raise Signal instruction broadcasts a message with a specific identifier and any Trigger(s) listening to that

specific id will be executed. To receive a signal message, use the On Receive Signal and specify the identifier.

To avoid misspelling mistakes you can mark a Signal name as favorite, which can be used selecting them from the

dropdown button on the right side. To unfavorite a name, simply click again on the star button.

624.3 Data Structures

Advanced Data Structures (also known as ADS) are generic data structures that help better perform certain tasks.

Unique ID: Uniquely identifies an object with a serializable Guid.

Singleton: It ensures there's zero or one instance of a class at any given moment and its value is globally

accessible.

Dictionary: A serializable dictionary.

Hash Set: A serializable Hash Set.

Link List: A serializable Linked List.

Matrix 2D: A serializable 2D matrix.

Mark as Favorite

Page 827

Tree: Generic structure that allows to have acyclic parent-child depenedencies between multiple class instances.

Ring Buffer: This structure is similar to a generic list, but sequentially accessing its elements yields in an infinite

circular loop, where the last element connects with the first one.

State Machine: A data structure that allows to dynamically manipulate a state machine and define logic on each

of its nodes independently.

Spatial Hash: An advanced data structure that allows to detect collisions of any radial size inside an infinite

spatial domain with an O complexity of log(n).

624.4 Variables API

Local Variables and Global Variables can be modified at runtime using the exposed API. Note that Local variables

are accessed via their component and Global variables require to be accessed through a singleton manager that

contain their runtime values.

Learn how to use the Variables API

624.5 Properties

Properties are a core feature that allows to dynamically access a value. They are usually displayed as a drop-down

menu and allow to retrieve them depending on the option selected.

For example, a PropertyGetPosition allows to get a Vector3 that represents a position, from different sources; A

constant value, the Player's position, the main camera's position, from a Local Variable, etc...

Learn more about Properties

624.6 Saving & Loading

Game Creator comes with a fully extensible save and load system that allows to easily keep track of the game

progress and restore its state at any time. All that needs to be done is to implement an interface called IGameSave

and subscribe/unsubscribe inside the OnEnable() and OnDisable() methods respectively.

Saving and Loading

Saving custom data

Saving on custom databases

There is a special component called Remember that allows to cherry-pick the bits of data you want to save when

saving a game.

624.7 Tweening

Page 828

Game Creator comes packged with a powerful Tweening (or automatic frame interpolation, from in-between-ing)

system. It allows to fire & forget a command that creates a tween between a starting value and end value. The

transition can be linear or an easing function can be specified.

Learn more about Tweening

624.8 Examples and Templates

Game Creator and all modules come with a collection of examples and templates ready to be used on your games

and applications. Other developers can leverage this feature in order to create reusable examples that can be

installed/uninstalled across multiple projects or share them if you are a module developer using the Example

Manager window.

Learn more about Creating custom Examples

624.9 Domain Reload

Game Creator supports skipping domain reloading, which reduces the time it takes for Unity to enter and exit play-

mode.

Make sure Enter Play Mode Options is ticked and the Reload Domain option is disabled.

Page 829

625 Audio

Game Creator comes with an audio manager that automatically manages and optimizes the creation and

decomission of audio sources. There are 4 different types of audio channels, each with its own volume slider and

properties.

625.1 Ambient

Ambient sounds are what one could also call background music or ambience. It's a looped tracked played in the

background, and can be diegetic or non-diegetic. For example, a battle music track, the chirping of birds in a forest,

or the sound of a waterfall.

Use the Play Ambient Instruction to play an audio clip as an Ambient sound. It will keep playing until a Stop Ambient

Instruction is executed.

625.2 Sound Effects

Sound Effects (also known as SFX) are one-time clips played at a very specific time. The majority of sounds on a

game will be sound effects, for example: Punching a character, footstep sounds, or a slash of a sword. Most sound

effects are diegetic and thus, by default expect a spatial position.

To avoid the jarring effect where the same sound effect is played over and over again in a small time window, sound

effects can automatically randomly alter the speed and pitch of sounds. This allows to, for example, play a machine gun

sound effect, where each shot is slightly different than the previous one.

Use the Play Sound Effect Instruction to play an audio clip as a Sound Effect. It will automatically decommision the

audio source once the clip finishes playing.

625.3 UI

UI sound effects are non-diegetic clips played when the player interacts with the user interface. For example,

hovering over a button, clicking it or crafting an item after the user waits a timeout.

Play Ambient Instruction

Sound Variation

Play Sound Effect Instruction

Page 830

Use the Play UI Instruction to play an audio clip as a UI sound effect.

625.4 Speech

Speech clips are very similar to Sound Effects with the difference that they are bound to a Character, so that a

specific character can only play one speech clip at a time.

Use the Play Speech Instruction to play an audio clip as a Speech sound effect. If another clip is was being played on

the same target, it will stop the previous speech and play the new one. This is useful when the user skips

conversations.

Play UI Instruction

Play Sound Effect Instruction

Page 831

I.VI.I Data Structures

Page 832

626 Index

626.1 Data Structures

Advanced Data Structures (also known as ADS) are generic data structures that help better perform certain tasks.

Unique ID: Uniquely identifies an object with a serializable Guid.

Singleton: It ensures there's zero or one instance of a class at any given moment and its value is globally

accessible.

Dictionary: A serializable dictionary.

Hash Set: A serializable Hash Set.

Link List: A serializable Linked List.

Matrix 2D: A serializable 2D matrix.

Tree: Generic structure that allows to have acyclic parent-child depenedencies between multiple class instances.

Ring Buffer: This structure is similar to a generic list, but sequentially accessing its elements yields in an infinite

circular loop, where the last element connects with the first one.

State Machine: A data structure that allows to dynamically manipulate a state machine and define logic on each

of its nodes independently.

Spatial Hash: An advanced data structure that allows to detect collisions of any radial size inside an infinite

spatial domain with an O complexity of log(n).

Page 833

627 Unique ID

To generate unique identifiers, it is usually used the System.Guid class, because it provides a fast and reliable

mechanism to generate long enough IDs that the collision chance is almost zero.

However, this class is not serializable. That's why Game Creator comes with the UniqueID class, which serves two

purposes:

Serializable: This means that any changes made to this ID will be kept between editor sessions.

Custom UI: When showing this ID in a Unity Window, it automatically displays a nice and handy box with buttons

that allow to easily modify this ID or even regenerate it, in case that's necessary.

627.1 Initialization

To initialize a class instance of UniqueID is as easy as calling the constructor class. For example, let's say we want

to add a unique ID to a MonoBehaviour class:

This will automagically assign a unique ID to the myID field. If we drag and drop this component onto a scene game

object, we'll see this field with its associated ID.

627.2 Accessing ID

Accessing the ID value can be performed getting the IdString struct, which contains a string based ID and its hash

value. This last one is recommended when comparing to ids:

To get the hash value:

To get the string value:

Accessing the string value of the UniqueID should only be done if you plan on serializing this value somewhere. For

comparing two IDs, it is best if you simply compare their hash value, as the probablity that two strings have the same

hash value its very, very very low. On the other hand, comparing two int values is extremely fast and performant.

public class MyComponent : MonoBehaviour

{

public UniqueID myID = new UniqueID();

}

int hash = this.myID.Get.Hash;

string id = this.myID.Get.String;

Best Practices

Page 834

628 Singleton

The Singleton pattern ensures there's, at most, one instance of a class at any given time. Because of that, it can be

globally accessed from its class name. To make a singleton class, inherit from the Singleton<T> type:

To access this class, use MyClass.Instance which returns an instance of the MyClass. If none was present, it

creates one and then it returns it, so you don't have to worry about keeping track whether it has been created or not.

This Singleton pattern is specifically designed to work with Unity and thus, it requires the MyClass to inherit from

MonoBehaviour . However, this is defined automatically when inheriting from the Singleton<T> class.

If you need to perform some setup when creating a new class instance, override the the OnCreate() method.

Likewise, you can also override the OnDestroy() method to execute some logic when the instance is destroyed.

Singleton instances can survive or be destroyed every time their scene is unloaded. By default all singleton classes

survivde scene reloading. But if you want to destroy them when changing between scenes, override the

SurviveSceneLoads and set it to false :

public MyClass : Singleton<MyClass>

{ }

MonoBehaviour

public MyClass : Singleton<MyClass>

{

protected override void OnCreate()

{

base.OnCreate();

// This is executed only once when created

}

protected override void OnDestroy()

{

base.OnDestroy();

// This is executed only once when destroyed

}

}

public MyClass : Singleton<MyClass>

{

protected override bool SurviveSceneLoads => false;

}

Page 835

629 Dictionary

The serializable dictionary allows to have the whole fully fledged functionality of System.Collections.Dictionary

but also allows to automatically serialize its values.

To create a serializable dictionary, simply inherit from TSerializableDictionary<TKey, TValue> . For example, to

create a dictionary that uses string as their key and GameObject as their value:

You can now create a dictionary that automatically serializes its values and use it as any normal dictionary:

public MyDictionary : TSerializableDictionary<string, GameObject>

{ }

public MyComponent : MonoBehaviour

{

public MyDictionary dictionary = new MyDictionary();

private void Awake()

{

// Add element to dictionary:

this.dictionary.Add("Hello World", this.gameObject);

// Print element added

Debug.Log(this.dictionary["Hello World"].name);

}

}

Page 836

630 Hash Set

The serializable hash set allows to have the functionality of System.Collections.HashSet but also allows to

automatically serialize its values.

To create a serializable hash set, simply inherit from TSerializableHashSet<T> . For example, to create a hash set

that uses string types:

You can now create a hash set that automatically serializes its values and use it as:

public MyHashSet : TSerializableHash<string>

{ }

public MyComponent : MonoBehaviour

{

public MyHashSet hashSet = new MyHashSet();

private void Awake()

{

// Add element:

this.hashSet.Add("Hello World");

// Print if it can find the elements

Debug.Log(this.hashSet.Contains("Hello World"));

Debug.Log(this.hashSet.Contains("Foo"));

}

}

Page 837

631 Link List

The serializable linked list allows to have the functionality of System.Collections.LinkedList but also allows to

automatically serialize its values.

To create a serializable linked list, simply inherit from TSerializableLinkList<T> . For example, to create a hash set

that uses GameObject types:

You can now create a list that automatically serializes its values and use it as:

public MyLinkedList : TSerializableLinkList<GameObject>

{ }

public MyComponent : MonoBehaviour

{

public MyLinkedList list = new MyLinkedList();

public GameObject objectA;

public GameObject objectB;

public GameObject objectC;

private void Awake()

{

// Add element:

this.list.Add(this.objectA);

this.list.AddLast(this.objectB);

this.list.AddFirst(this.objectC);

// Print the first element:

Debug.Log(this.list.First().name);

}

}

Page 838

632 Matrix 2D

The serializable 2D matrix allows to have an array of arrays (where all rows and columns have the same size) and

the structure can be serialized in order to persist in the Inspector or saving the game.

To create a serializable matrix, simply inherit from TSerializableMatrix2D<T> . For example, to create a matrix that

uses GameObject :

You can now create a matrix that automatically serializes its values:

public MyMatrix : TSerializableMatrix2D<GameObject>

{ }

public MyComponent : MonoBehaviour

{

public MyMatrix matrix = new MyMatrix(10, 5);

private void Awake()

{

// Add element:

this.matrix[2, 3] = this.gameObject;

// Print element added

Debug.Log(this.matrix[2, 3].name);

}

}

Page 839

633 Tree

The Tree class allows to create acyclic dependency graphs that start from a root node and end with leaf nodes. A

single node can have an unlimited number of branches.

To create a Tree, inherit from the Tree<T> class, where T is the value type of the node. For example, to create a tree

of game objects:

A Tree<T> class is both the tree and the node class. So any child of a tree returns a tree object too. A tree can return

its parent:

And it's children, which is a dictionary indexed by its Ids:

public MyTree : Tree<GameObject>

{ }

public MyComponent : MonoBehaviour

{

public MyTree tree = new MyTree();

private void Awake()

{

// Add element:

this.tree.AddChild(this.gameObject);

foreach (var child in this.tree)

{

// Print child id:

Debug.Log(child.Value.id);

// Print child game object:

Debug.Log(child.Value.Data.name);

}

}

}

MyTree parent = this.tree.Parent

KeyValuePair<string, GameObject> = this.tree.Children;

Page 840

634 Ring Buffer

The Ring Buffer is a very interesting data structure that works very similar to an array, except that its capacity is

capped and iterating over its elements will automatically jump from its tail to its head when reaching the end of the

list. Think of it as an array with a limited capacity where the tail joins the head, thus shaping it a ring.

To create a ring buffer, create a class that inherits from the Ring<T> class or directly use the Ring<T> type. For

example, to create a ring buffer with 5 elements:

The ring buffer starts with its index pointing to the first element. Calling Next() , Current() and Previous() will

change the pointer and return the new value. For example:

The previous code snippet will iterate the previous ring 20 times (100 / 5) and print the name of each entry.

An interesting method of the ring buffer is the Update(callback) . This method accepts a method as its parameter

and executes it for every element of the ring. For example:

The previous method will print each of the entries of the ring buffer, as the Debug.Log() method is applied to each

one of them.

Ring<string> myRing = new Ring<string>(

"string 1",

"string 2",

"string 3",

"string 4",

"string 5",

);

// Set the index to 0:

myRing.Index = 0;

// Iterate 100 times:

for (int i = 0; i < 100; ++i)

{

// Print the next value:

Debug.Log(myRing.Next());

}

myRing.Update(Debug.Log);

Page 841

635 State Machine

A State Machine is a commonly used pattern that allows to isolated the complexity of multiple tasks in different

nodes, in a way that each node is not aware of what others do.

For a full description of what a finite state machine is check this Wikipedia article.

635.1 Creating States

Let's start seeing how to create states before creating a state machine. A State is a single node unit from the state

machine. To create one, create a class that inherits from the StateMachine.State abstract class:

A State has 3 virtual methods that can be overriden in order to execute its custom logic:

A state has an IsActive property that can be queried to check if this state is currently the active one.

If you need to hook events to a State in order to make it work with other scripts, you can also subscribe to its event

system.

For example, let's first create an instance of MyState1 :

About State Machines

public class MyState1 : StateMachine.State

{ }

// Executed when the machine changes to this state

void WhenEnter(StateMachine machine)

{ }

// Executed when the machine exists from this state

protected virtual void WhenExit(StateMachine machine)

{ }

// Executed every frame while this state is active

protected virtual void WhenUpdate(StateMachine machine)

{ }

// Executed when the machine changes to this state

event Action<StateMachine, State> EventOnEnter;

// Executed when the machine exists from this state

event Action<StateMachine, State> EventOnExit;

// Executed every frame while this state is active, before the WhenUpdate(...)

event Action<StateMachine, State> EventOnBeforeUpdate;

https://en.wikipedia.org/wiki/Finite-state_machine

Page 842

Now let's hook an external method that prints a message when the state is entered:

The OnEnterState(...) method must have the following signature:

635.2 Creating a State Machine

To create a state machine, create a class that inherits from StateMachine :

Note that a State Machine requires at least one state to be passed to the constructor. This is the first starting state that

the machine will begin with.

The developer is responsible for calling its Update() method. We recommend calling it in a MonoBehaviour's

Update() .

To instruct the machine to change from one state to another, use the Change(State) method:

A State Machine also has 2 events that allow methods to be subscribed, which are launched as soon as there is a

change in the currently active state:

MyState1 state1 = new MyState();

state1.EventOnEnter += this.OnEnterState;

public void OnEnterState(StateMachine machine, State state)

{

Debug.Log("Hello World!");

}

public class MyStateMachine : StateMachine

{

public MyStateMachine(State state) : base(state)

{ }

}

First State

MyState1 state1 = new MyState1();

MyState2 state2 = new MyState2();

// Initialize with state1

MyStateMachine machine = new MyStateMachine(state1);

// Change to state2

machine.Change(state2);

Page 843

event Action<State> EventStateEnter;

event Action<State> EventStateExit;

Page 844

636 Spatial Hash

The Spatial Hash algorithm is a performant non-physics based query system that returns a list of objects contained

in a position and a certain radius.

This algorithm scales with the amount of objects tracked. Its performance shines the most when there are multiple

queries launched in a single frame. For more information about how this algorithm works check this Twitter post:

https://twitter.com/catsoftstudios/status/1201520331724333058

636.1 Creating a Domain

The first thing needed is to create a world domain from where to track all objects and organize the space

partitioning. We recommend setting up a static class that will handle registering all the changes that happen in the

scene. For example:

The previous code snippet initializes the Value field with the default SpatialHash constructor. the

OnSubsystemInit() is a method that gets called at the very beginning of starting the game, before any scene is

loaded, thanks to its attribute.

636.2 Tracking Changes

Each object instance is responsible for updating the domain value when it changes. To do so, the object must

implement the ISpatialHash interface, as well as call the Insert() , Remove() and Update() methods to start,

stop and update the spatial hash's domain. For example:

Performance

public static class MySpatialHash

{

public static SpatialHash Value { get; private set; } = new SpatialHash();

[RuntimeInitializeOnLoadMethod(RuntimeInitializeLoadType.SubsystemRegistration)]

private static void OnSubsystemsInit()

{

Value = new SpatialHash();

}

}

https://twitter.com/catsoftstudios/status/1201520331724333058

Page 845

This code is meant for demonstration purposes and might not be optimal on every case. If you want to squeeze every

drop of performance, you may want to cache the last tracked position and only call the Update(this) method when its

position has changed.

636.3 Requesting Collections

To request all the objects around a point and within a specific radius, use the Query(Vector3 point, float

radius) method, which returns a list of game objects contained in the specified region.

The list contains all components that implement the ISpatialHash interface tracked in this domain that are within

the spherical region defined.

public class MyComponent : MonoBehaviour, ISpatialHash

{

void OnEnable()

{

// Start tracking this object

MySpatialHash.Value.Insert(this);

}

void OnDisable()

{

// Stop tracking this object

MySpatialHash.Value.Remove(this);

}

void Update()

{

// Update tracking position

MySpatialHash.Value.Update(this);

}

// ISpatialHash interface. Position in space:

Vector3 ISpatialHash.Position => this.transform.position;

// ISpatialHash interface. Identifies this class:

int ISpatialHash.UniqueCode => this.gameObject.GetInstanceID();

}

Boost Performance

// Define a point and radius in the 3D space:

Vector3 point = new Vector3(0,0,0);

float radius = 10f;

// request for all tracked game object within:

List<ISpatialHash> list = MySpatialHash.Value.Query(point, radius);

Page 846

637 Variables API

637.1 Local Variables

Local Name Variables and Local List Variables are components attached to game objects and their value is bound

to the scene they are. To access their runtime values you reference the component and call one of their public

methods.

637.1.1 Local Name Variables

Local Name Variables are components attached to game objects and can be referenced like any other script. To

access any of its values you can use the following methods:

637.1.1.1 Getting values

Returns true if the variable exists. False otherwise

Returns the value of the variable. Requires to be casted to the correct value

637.1.1.2 Setting values

Sets the value of a variable

637.1.1.3 Listening to events

You can also register when a Local Name Variable changes using the following methods:

Executes the callback every time a variable changes its value

Stops executing the callback when the variable changes

637.1.2 Local List Variables

A Local List Variables component has the following methods for getting and manipulating its values:

bool Exists(string name)

object Get(string name)

void Set(string name, object value)

void Register(Action<string> callback)

void Unregister(Action<string> callback)

Page 847

637.1.2.1 Getting values

Returns the value indexed by the pick parameter

Property that returns the number of elements of the list

637.1.2.2 Setting values

Sets a value indexed by the pick parameter

Inserts a value at the indexed position

Adds a new value at the end of the list

Removes the value indexed by the pick parameter

Removes all values from the list

Moves the value indexed at a position to a new index

637.1.2.3 Listening to events

You can also register when a Local List Variable changes any of its items using the following methods:

Executes the callback method whenever there's a change

Stops executing the callback when the list changes

object Get(IListGetPick pick)

int Count

void Set(IListSetPick pick, object value)

void Insert(IListGetPick pick, object content)

void Push(object value)

void Remove(IListGetPick pick)

void Clear()

void Move(IListGetPick pickA, IListGetPick pickB)

void Register(Action<ListVariableRuntime.Change, int> callback)

void Unregister(Action<ListVariableRuntime.Change, int> callback)

Page 848

637.2 Global Variables

Global Name Variables and Global List Variables are scriptable objects and their runtime value is stored in a

separate singleton manager called GlobalNameVariablesManager and GlobalListVariablesManager .

637.2.1 Global Name Variables

The GlobalNameVariablesManager has the following methods available:

637.2.1.1 Getting values

Returns true if the variable exists. False otherwise

Returns the value of the variable. Requires to be casted to the correct value

637.2.1.2 Setting values

Sets the value of a variable

637.2.1.3 Listening to events

You can also register when a Global Name Variable changes using the following methods:

Executes the callback every time the variable changes its value

Stops executing the callback when the variable changes

637.2.2 Global List Variables

The GlobalListVariablesManager has the following methods:

637.2.2.1 Gettings values

Returns the number of elements of the list

bool Exists(GlobalNameVariables asset, string name)

object Get(GlobalNameVariables asset, string name)

void Set(GlobalNameVariables asset, string name, object value)

void Register(GlobalNameVariables asset, Action<string> callback)

void Unregister(GlobalNameVariables asset, Action<string> callback)

int Count(GlobalListVariables asset)

Page 849

637.2.2.2 Setting values

Returns the value indexed by the pick parameter

Sets a value indexed by the pick parameter

Inserts a value at the indexed position

Adds a new value at the end of the list

Removes the value indexed by the pick parameter

Removes all values from the list

Moves the value indexed at a position to a new index

637.2.2.3 Listening to events

You can also register when a Global List Variable changes any of its items using the following methods:

Executes the callback method whenever there's a change

Stops executing the callback when the list changes

object Get(GlobalListVariables asset, IListGetPick pick)

void Set(GlobalListVariables asset, IListSetPick pick, object value)

void Insert(GlobalListVariables asset, IListGetPick pick, TValue content)

void Push(GlobalListVariables asset, TValue value)

void Remove(GlobalListVariables asset, IListGetPick pick)

void Clear(GlobalListVariables asset)

void Move(GlobalListVariables asset, IListGetPick pickA, IListGetPick pickB)

void Register(GlobalListVariables asset, Action<ListVariableRuntime.Change, int> callback)

void Unregister(GlobalListVariables asset, Action<ListVariableRuntime.Change, int> callback)

Page 850

638 Properties

Game Creator properties are a special type of class that allows to dynamically specify the source of a field value

using a dropdown menu. The menu's options are dynamic and can be added without the need of overwriting Game

Creator core code, allowing to write maintainable and decoupled code.

Properties take advantage of Unity's polymorphic serialzation, which means that the dropdown menu options are

decoupled from the core code. Anyone can plug in their own menu options without overwriting any scripts.

There are different types of Properties, each with its own set of options. All of them have in common that, when

retrieving them, an instance of Args parameter is passed, which contains two fields:

Target: A reference to the Game Object responsible for calling the property

Self: A reference to the Game Object containing the property reference.

There are some cases where the Target and Self fields will reference the same game object.

Property Get types allow to retrieve a value and Property Set types allow to set a value. Game Creator comes with a

collection of both types, but each module increases the amount available. You can even create your own property

types to extend the existing ones.

638.1 Property Types

There are a multiple default property types available, which start with PropertyGet ~ and end with the type. For

example PropertyGetNumber is the property type for numeric values, and PropertyGetBool is the analog for

boolean (true/false) values.

There are also property setters, which allow to set the value of a property. They start with PropertySet ~ and also

end with the type name. For example the PropertySetGameObject allows to set the value of a game object

reference.

638.2 Using Properties

Polymorphic Serialization

Args Parameter

Page 851

Using properties requires the Editor scripts to be written using Unity's UI Toolkit. IMGUI is not supported.

To use a property it's very simple. You just need to declare them as you would with a primitive type, but instead of

getting the value directly, call the Get(args) method to retrieve its value.

For example, let's say that in a component, you want to get a string value. Instead of declaring a value like this:

You could use a property so the source of that string value isn't hard-coded, but set from the Inspector. Like this:

This will display a dropdown menu on the Inspector with the current option selected. By default it's a constant string,

but the value can be chosen to come from the name of a game object, a local or global variable, etc.

To get the value you simply call the Get(args) method:

The Args (arguments) class is a two-field struct that contains the game object considered as the source of the call as

well as the targeted game object. This class is necessary in order to use properties that reference the "Self" or "Target"

values. If you are not sure what the self and target objects are, simply pass in the current MonoBehaviour's game

object:

638.3 Creating Properties

Just like Instructions and other visual scripting nodes, one can create custom properties to interact with other

assets or custom code. To create a new GET Property simply inherit the PropertyTypeGet[TYPE] .

UI Toolkit

public string myValue = "This is my string";

public PropertyGetString myValue = new PropertyGetString();

string value = this.myValue.Get(args);

Args

Args args = new Args(this.gameObject);

Page 852

For example let's say we want to create a custom number GET property that always returns 42 (for some reason). In

that case we create a new script that inherits from PropertyTypeGetNumber called GetNumber42 :

You can also expose fields just like you would do in a custom Inspector script. For example, if you want to display an

integer field which will be returned by the property you can do so:

You can add as many fields as you want. Even other properties.

To return the value the Get(args) method must be implemented. The Args parameter contains the Self and

Target values calling the property, which can be used to dynamically get the final value if necessary.

Optionally the PropertyTypeGetNumber child class can also override the String property to display a nicer title in

the Unity Inspector. For example:

Property classes can also be decorated with the Title , Category , Description and other attributes, just like it is

done on Instructions and other visual scripting nodes.

Example of a custom number property

public class GetNumber42 : PropertyTypeGetNumber

{

public override Vector3 Get(Args args)

{

return 42;

}

}

Adding fields

public class GetNumberInteger : PropertyTypeGetNumber

{

[SerializedField] private int myNumber = 42;

public override Vector3 Get(Args args)

{

return this.myNumber;

}

}

public class GetNumber42 : PropertyTypeGetNumber

{

public override Vector3 Get(Args args)

{

return 42;

}

public override string String => "42";

}

Page 853

I.VI.II Save & Load

Page 854

639 Saving and Loading

Game Creator comes with a flexible mechanism to keep track of changes made at runtime and store these by calling

a simple Save() method. Likewise, restoring any previously saved game can be done executing a Load() method

from the class responsible for managing this functionality.

639.1 Storage Location

Game Creator makes it very easy to choose how data is saved. By default it uses the Player Prefs system from Unity,

which stores all the data in a file which varies its location depending on the runtime platform. See the Unity

documentation for Player Prefs for more information.

639.2 Storage Encryption

Game Creator also makes it very easy to encrypt your game saves using various encryption algorithms, which you

can choose from the dropdown button above the storage location.

The default algorithms are very simple ones that prioritize speed over security.

None: No encryption is applied. This is the default value.

https://docs.unity3d.com/ScriptReference/PlayerPrefs.html
https://docs.unity3d.com/ScriptReference/PlayerPrefs.html

Page 855

XOR: A symmetric algorithm that obfuscates the data by performing a logic XOR operation with a pass-phrase.

Caesar: Another symmetric algorithm that obfuscates the data by shifting each alphanumeric value by a number

specified.

639.3 What can be saved and loaded

The Save/Load system can save any primitive serializable field: integers, booleans, strings, positions, rotations or

any managed instance type marked with the [System.Serializable] attribute.

However, it does not serialize objects inheriting or fields referencing objects that inherit from Unity.Object . For

example: Game Objects, Transforms, MonoBehaviours, ...

639.4 Save Slots

Most games allow to store multiple saves and allow the user to choose which one to restore when loading a

previous saved play. With Game Creator, each one of these save spaces are called slots and they are represented by

an integer number ranging from 1 up to 999.

Notice that you can have up to 998 slots. The number 0 is reserved for shared settings.

639.5 Saving

To save a game, it's as easy as calling the Save(slot: integer) method through the SaveLoadManager singleton

class. This class is responsible for tracking all objects in the scene and silently collects their state in a background

process. Saving a game can be done using the following line, passing a constant save slot number 1 as a parameter:

By default, the saving system uses Unity's PlayerPrefs system, which blocks the main thread until al data is written.

However, Game Creator provides tools that allow to customize how data is saved. You could even have an online

database where you dump the player's save files.

Because we can't assume the saving will be done synchronously, the Save(slot: int) method returns a Task that

can be awaited. This is very useful if you plan on synchronizing the game save with an external database, such as

Steam, Firebase or any other online data warehouse service.

To handle these cases, all that needs to be done is use an async method and await the result. Like so:

Note

SaveLoadManager.Instance.Save(1);

Page 856

However, if you are using the default PlayerPrefs save system or your custom one does block the main thread when

saving, you can either await the task or use a discard operator:

639.6 Loading

Loading a previously saved game is very similar to saving one.

It is important to highlight that loading a game forces to unload the current scene and loads the saved one

afterwards. Even if they are the same.

The Load(slot: int) method returns a Task object, just like the Save(slot: int) . You can choose to either

await the load or, in most cases, use the discard operator:

639.7 Deleting

A user may want to delete all the information associated to a save slot. This can be done using the following line:

The Delete(slot: int) method also returns a Task object. However, in this case, it may be more interesting

knowing when a delete operation has finished.

639.8 Events

public async Task MySaveFunction()

{

Debug.Log("Start saving game");

await SaveLoadManager.Instance.Save(1);

Debug.Log("Game has been saved");

}

public void MySaveFunction()

{

Debug.Log("Start saving game");

_ = SaveLoadManager.Instance.Save(1);

Debug.Log("Game has been saved");

}

SaveLoadmManager.Instance.Load(1);

public void MyLoadFunction()

{

_ = SaveLoadManager.Instance.Load(1);

}

SaveLoadManager.Instance.Delete(1);

Page 857

The saving and loading system contains 6 events that programmers can hook onto to detect when a saving and a

loading process has started.

public event Action<int> EventBeforeSave;

public event Action<int> EventAfterSave;

public event Action<int> EventBeforeLoad;

public event Action<int> EventAfterLoad;

public event Action<int> EventBeforeDelete;

public event Action<int> EventAfterDelete;

For example, doing something when a save operation is about to start can be achieved subscribing to the

EventBeforeSave event:

You can subscribe to as many methods as you need in each event. However, make sure to remove the subscription

when the class that is doing subscribing is destroyed. For example, following the excerpt from above, it would also

be optimal to do:

639.9 Customize

As mentioned before, Game Creator doesn't assume a specific save or load procedure. In fact, it provides with tools

to customize how data is collected and stored in order for the developer to customize it and tailor it to its needs.

In the following sections we'll see how to:

Create a custom class that can be saved

Determine a custom data location

Create a custom encryption

void Start()

{

SaveLoadManager.Instance.EventBeforeStart += this.OnBeforeSave;

}

public void OnBeforeSave(int slot)

{

Debug.Log("About to save game in slot " + slot);

}

void OnDestroy()

{

SaveLoadManager.Instance.EventBeforeStart -= this.OnBeforeSave;

}

Page 858

640 Custom Data

The SaveLoadManager class keeps track of all savable objects in the scene and collects their state in a background

process so when the Save() method is invoked, it contains all the information required to successfully perfom the

oepration.

In order to let the SaveLoadManager know what objects it needs to keep track of the developers need to implement

the IGameSave interface on each object that contains data to save.

As soon as the object is available, it must call the Subscribe(reference: IGameSave, priority: int) method.

Likewise, when the object is destroyed it should call Unsubscribe(reference: IGameSave) .

640.1 The IGameSave interface

The IGameSave interface requires to fill the following methods and properties:

string SaveID : Gives an id that uniquely identifies this data

bool IsShared : Tells whether this data is shared across all save games

Type SaveType : Returns the type of the object to be serialized and stored

object SaveData : Returns the instance of the object that's going to be saved

LoadMode LoadMode : Define whether loading happens following a Greedy or a Lazy format

void OnLoad(object value) : Callback for when the game is loaded

In order to understand better how this works, it's better to demonstrate this with an example.

Let's say that in our game we have one single chest in a scene that the player can only open once.

In order to keep track of whether the chest has been opened or not, we implement the IGameSave interface on the

component that defines the behavior of the chest:

public class MyChest: MonoBehaviour

{

public bool hasBeenOpened = false;

public void OnOpen()

{

Debug.Log("Do something, like giving a potion to player");

this.hasBeenOpened = true;

}

}

Page 859

Most fields should be self explanatory. It is important to highlight though, that it's up to the developer to implement

how the state is restored. The OnLoad(object value) is called when a game is loaded, and the value parameter is

the value from a previously saved game. It's the developer's responsibility to cast the object value to a valid type and

assign the values to whichever fields are necessary.

The Load Mode is a tricky concept. It's an enum that allows to choose between two options:

Lazy: This should be the default option for 90% of the cases. When this option is selected, the save and load

system will restore the state of an object when this object is created. Not before.

Greedy: This requires a persistent object that survives cross-scene transitions (set as DontDestroyOnLoad()

method). Most commonly used with singleton patterns, this mode forces the load as soon as the event is

triggered.

640.2 Subscription

Now, all that's left to do is tell the SaveLoadManager to keep track of this component as soon as it's initialized, and

unsubscribe from it when the component is destroyed. Following the previous example, we implement the

OnEnable() and OnDisable() Unity methods to subscribe and unsubscribe respectively:

public class MyChest: MonoBehaviour, IGameSave

{

public bool hasBeenOpened = false;

public void OnOpen()

{

if (this.hasBeenOpened) return;

Debug.Log("Do something, like giving a potion to player");

this.hasBeenOpened = true;

}

// The id for this save game is 'my-chest'

public string SaveID => "my-chest";

// This save should not be shared across multiple slots

public bool IsShared => false;

// The object type we're going to be saving

public Type SaveType => typeof(bool);

// The value we're going to store

public object SaveData => this.hasBeenOpened;

// The loading mode should be set as lazy

public LoadMode LoadMode => LoadMode.Lazy;

// When loading the game, restore the state

public void OnLoad(object value)

{

this.hasBeenOpened = (bool)value;

}

}

Page 860

This gives all the necessary information to the save and load system about the life-cycle of this object so it can keep

track of its state progress. If your object is never destroyed and survives scene transitions, you can skip the un-

subscription.

To wrap things up, here's the full script of the example:

public class MyChest: MonoBehaviour, IGameSave

{

public bool hasBeenOpened = false;

void OnEnable()

{

_ = SaveLoadManager.Subscribe(this);

}

void OnDisable()

{

_ = SaveLoadManager.Unsubscribe(this);

}

// IGameSave implementation below

// ...

}

Page 861

The hasBeenOpened property will always return false if the OnOpen() method has never been executed, but will

return true if it has at some point. If the user saves and loads back the game, its value will be kept.

public class MyChest: MonoBehaviour, IGameSave

{

public bool hasBeenOpened = false;

public void OnOpen()

{

if (this.hasBeenOpened) return;

Debug.Log("Do something, like giving a potion to player");

this.hasBeenOpened = true;

}

void OnEnable()

{

_ = SaveLoadManager.Subscribe(this);

}

void OnDisable()

{

_ = SaveLoadManager.Unsubscribe(this);

}

public string SaveID => "my-chest";

public bool IsShared => false;

public Type SaveType => typeof(bool);

public object SaveData => this.hasBeenOpened;

public LoadMode LoadMode => LoadMode.Lazy;

public void OnLoad(object value)

{

this.hasBeenOpened = (bool)value;

}

}

Page 862

641 Custom Location

By default, Game Creator saves games using the Player Prefs built-in system. However, although this solution is

cross-platform and will work for most users, some might prefer to sync their saves with an online database or use a

different system than Unity's PlayerPrefs.

Here we will explore how easy it is to extend the save location.

641.1 TDataStorage class

To create a custom save location, one must create a class that inherits from the abstract class TDataStorage ,

which contains all the necessary methods to store game information.

Notice that in the following example(s) aren't any error handling mechanism for sake of simplicity. A production-ready

product should also check and inform of the necessary errors that may occur.

Let's create our storage location class called StorageMyDB.cs :

When creating a new storage database, we precede the name of the class with the Storage word. So if your class is

called MyDB the convention would be to call it StorageMyDB .

Note

Convention

Page 863

The Title and Description attributes allow to define the name and give a brief description of what this storage

does, so it can be easily identified when choosing it from the Setting's dropdown menu.

The Image attribute determines the visual icon from the dropdown menu. We recommend using the disk icon and

only change the color.

The Category attribute determines the location in the dropdown menu.

The TDatabaseStorage class has a collection of abstract methods that need to be overridden and implemented in

order to use the custom storage.

DeleteAll : Is used to erase all information stored.

DeleteKey : Is used when deleting a single entry in the database.

HasKey : Returns true or false depending on whether the database has a field with that key name.

[Title("My Online Database")]

[Category("My Online Database")]

[Image(typeof(IconDiskSolid), ColorTheme.Type.TextLight)]

[Description("Stores the data in a custom database location")]

[Serializable]

public class MyOnlineDatabase: TDataStorage

{

public async override Task DeleteAll()

{

// ...

}

public async override Task DeleteKey(string key)

{

// ...

}

public async override Task<bool> HasKey(string key)

{

// ...

}

public async override Task<object> Get(string key, Type type)

{

// ...

}

public async override Task Set(string key, object value)

{

// ...

}

public async override Task Commit()

{

// ...

}

}

Page 864

Get : Returns the contents of the database field with the specified key name.

Set : Sets the new value on the database with the specified key name.

Commit : Only used when setting multiple values on a database is very slow. The commit is always called after a

batch of data is send to be stored.

It is important to note though that all methods have the async prefix and either return a Task object or a Task

associated with an object.

This is because there's a certain amount of time elapsed between the http request and the answer from the server.

Being able to await requests let's you tailor how to safely chain commands and make sure each request is successfully

fulfilled.

Using async/await

Page 865

642 Custom Encryption

To create a custom encryption algorithm you need to inherit from the TDataEncryption abstract class and override

both the Encrypt(...) and Decrypt(...) methods.

Each method has a single string argument and returns another string argument, which can either be the

decrypted message or the encrypted message.

The Title and Description attributes allow to define the name and give a brief description of what this encryption

algorithm does, so it can be easily identified when choosing it from the Setting's dropdown menu.

The Image attribute determines the visual icon from the dropdown menu.

The Category attribute determines the location in the dropdown menu.

The TDataEncryption class has two abstract methods that need to be overridden and implemented in order to use

the custom encryption.

Encrypt(input) : Takes an input string and returns the encrypted value.

Decrypt(input) : Takes an input string and returns the decrypted value.

Note that you can add serializable methods to the class and these values will appear in the Settings menu. For

example, if your encryption algorithm requires a private string key called privateKey and an integer number called

salt you can add them inside your class with the serialized attribute:

[Title("My Custom Encryption")]

[Category("My Custom Encryption")]

[Image(typeof(IconCubeSolid), ColorTheme.Type.Yellow)]

[Description("Uses my own custom and super-secret encryption algorithm")]

[Serializable]

public class EncryptionMyCustom : TDataEncryption

{

public override string Encrypt(string input)

{

// Logic for taking the input and returning it as an encrypted output

}

public override string Decrypt(string input)

{

// Logic for taking the input and returning it as an decrypted output

}

}

[SerializeField] private string privateKey;

[SerializeField] private int salt;

Page 866

643 Remember

The Remember component allows to cherry-pick the data that is stored when saving the game. By default, it stores

the position, rotation and scale.

To add a new element to be saved, click on the Add Memory button and select the type of data to save.

643.1 Creating a Memory

Game Creator comes with a set of default memories, but you can create custom ones that extend the data stored.

To create a new Memory create a new class that inherits from the Memory class. For this example, we'll create a

memory that saves name of the game object attached to this memory.

The Title property determines the name of this memory. This has no effect on the data stored but it displays this

value on the Inspector.

[Serializable]

public class MemoryName : Memory

{

public override string Title => "Name of Game Object";

public override Token GetToken(GameObject target)

{

return new TokenName(target);

}

public override void OnRemember(GameObject target, Token token)

{

if (token is TokenName tokenName)

{

target.name = tokenName.text;

}

}

}

Page 867

The GetToken(...) method returns the Token instance of this memory and is called when the game data is

scheduled to be saved. A Token is a data container that contains the data to be stored. In this case, we'll need to

create a new class called TokenName that inherits from Token and has a serializable field to save the name of the

object.

The OnRemember(...) method is called when loading a previously saved game and is used to restore its state. In

this case, it changes the name of the game object to the one it tries to remember.

The custom Memory class instance can be decorated using any of the attributes found in the Instruction ,

Condition and Event classes.

[Serializable]

public class TokenName : Token

{

public string text;

public TokenName(GameObject target) : base()

{

this.text = target.name;

}

}

Decorations

Page 868

644 Tween

Tweening is the process to define a starting positon and an end position, and let it transition from one to the other

over the course of a specifed duration.

For exmaple, opening a door can be easily achieved defining it's starting position as its current position and its end

point as the same as its starting one, plus 2 units up in the Y axis. Once you specify the duration, the door will slide

upwards when the tweening is activated.

The Tweening library has been created with Game Creator in mind, but can also be leveraged to be used in other

scripts. Use the Tween.To(...) static method to create a new transition.

The To(gameObject, input) has two parameters: The Game Object that recieves the tweening, and an instance of a

TweenInput class, which configures the animation.

Following the example from above, let's say we want to slide a "door" object 2 units up in the air. We can define the

TweenInput class instance like this:

In this example we use a Vector3 transition, but it accepts any value type, like numbers, colors, quaternions, ... It's up to

the updateCall to interpolate between the initial and final value.

Let's break down each of these parameters in order:

start: A value indicating the starting position

Vector3 valueSource = door.position;

Vector3 valueTarget = door.position + Vector3(0,2,0);

float duration = 5f;

ITweenInput tween = new TweenInput<Vector3>(

valueSource,

valueTarget,

duration,

(a, b, t) => door.position = Vector3.Lerp(a, b, t),

Tween.GetHash(typeof(Transform), "transform"),

Easing.Type.QuadInOut

);

Transition Type

TweenInput<Vector3>(

Vector3 start,

Vector3 end,

float duration

Update updateCall,

int hash,

Easing.Type easing

);

Page 869

end: A value indicating the end position

duration: The amount of time it takes to complete the transition

updateCall: A method called every frame while the transition occurs. Contains 3 parameters: The starting value,

the end value and the completion ratio between 0 and 1.

hash: An integer that uniquely identifies this transition. If another transition with the same id starts, it cancels the

previous one.

easing: An optional easing function. If none is provided, it will use a linear function.

Page 870

645 Custom Installs

Game Creator comes with the Install window, which allows a user to install and uninstall examples and templates

from all modules. This is something available to all module developers and here you'll learn how to create, step by

step, a template for a module called "My Module".

645.1 Installer

The installer directory is where the compressed file with the information about it is located. This folder is usually

found under the custom Module's path but can be anywhere on the project folder. It must contain two files:

An Installer configuration file, which contains all the information related to the example, including its name, the

module it belongs to, a description and the version of this package.

A Package.unitypackage file, which contains the compressed assets that will be unpacked upon installing.

645.2 Installation Location

The installed location is the directory where the example is decompressed after installing an example in order to be

used by the user. This folder is always located at the following route:

An installed extension will always have a folder parent called after the name of the module, followed by a dot,

followed by the name of the example, followed by an @ symbol and the semmantic version of the example. For

example, if the example is called "My Example" and it's from a module called "My Module", the installation location of

the example will be:

645.3 Creating a custom Installer

The example installer can be placed anywhere in the project. For simplicity it should be created where you have the

rest of the module's assets. For example, if you are creating a module called "My Module" and an example of that

called "My Example", at the root of the Unity project, you may want to place the installer inside the MyModule folder:

Assets/Plugins/Game Creator/Installs/

Assets/Plugins/Game Creator/Installs/MyModule.MyExample@1.0.0/

Assets/

MyModule/

Examples/

MyExample/

Scripts/

Textures/

...

Page 871

645.3.1 The Installer asset

Now that there is a folder where we can drop in the installation files, we'll create an Installer asset inside the

MyExample folder. To do so, right click on the aforementioned folder and select Create -> Game Creator ->

Developer -> Installer . If the option doesn't appear, you can also duplicate any existing Installer asset. Once you

have the Installer asset you can rename it so it makes sense for your project.

We recommend sticking to Game Creator's naming convention and name the asset following "[ModuleName].

[ExampleName]". This makes it easier to identify the asset and avoids conflicting names with other examples from

other modules.

With the Installer in place, click on the Configuration button to expand the properties available and fill in the fields:

Name: Name of the Example. Following the example from above, this would be "My Example.

Module: Name of the module. It is important to note that this determines the category of the example. In the use

case from above, the name would be "My Module".

Description: A thorough description of this example. Make sure to indicate any quirks the example may have or

how to get started once the example is installed.

Author: Name of the creator of this example. This has no implication other than giving credit to the creator.

Version: The semmantic version of this example. Make sure to increase the value every time you create a new

version of the example.

Complexity: How difficult it is for users to understand this example. This is for informational purposes only.

Dependencies: A collection of ID (module name + example name) that this example depends on.

The Install window will automatically install any dependencies that an example may depend on, without prompting the

user to do so. This allows to quickly resolve any conflicts between this example and others that are required to be

installed.

For example, if the example Example A has Example B as a dependency, and this last one is not yet installed, attempting

to install Example A will install both Example A and Example B.

If Example B cannot be found, it won't be possible to install Example A from the Install window and will prompt the user

an error message telling which module could not be found.

645.3.2 Making the skeleton

Name Convention

Dealing with Dependencies

Page 872

Now that we have the installer in place it's time to create the skeleton from which to build our example. To do so,

select the previously created Installer and in the Inspector, right click on the name of the installer. This will make a

dropdown menu appear with a bunch of options:

Install Package: Forces the installation of this example. However, it is recommended to use the Install window to

perform any installation instructions.

Delete Package: Deletes the installed example, if there's any.

Build Package: Changes the name of the installation path to fit the version number and creates a

Package.unitypackage file at the installation location.

Create Package: Creates the bare bones structure that allows to develop a new example.

In our case, we want to click on the "Create Package" option. This will create a new folder at:

Inside this folder you can place all prefabs, materials, scenes or any content that the example must have. To

generate (or compress) this folder so it can be shared, select the option "Build Package" from the previous dropdown

menu. This will export all assets inside the aforementioned folder and create a file called Package.unitypackage at

the same directory as the Installer.

645.4 Sharing your example

Once you have the example built, it is ready to be distributed. To share this example installer, you just need to export

the folder with the installer and the Package.unitypackage file generated.

If you (or the user) opens the Install window, the module will be displayed as a sub category of the specificed

module with the option to install it, update it and/or delete it, depending on whether there is an installed version or

not.

Assets/Plugins/Game Creator/Installs/MyModule.MyExample@1.0.0/

Page 873

I.VII Releases

Page 874

646 Releases

646.1 2.17.51

New

Cameras: FPS shot has an offset value

Changes

Editor: Support for Unity 6

Cameras: TPS shot uses dynamic shoulder and lift

Fixes

General: Smooth Time causing NaN values when Time Scale is 0

Character: Time scale affecting time unbound values

Cameras: First Person Set Rotation incorrect pitch

Editor: Fuzzy Finder not registering shortcuts

Properties: Set String Input Field missing Text Mesh Pro

Properties: Wrong Property Set method name

Removes

Navmesh: Navmesh Areas have been deprecated

646.2 2.16.50

(Latest)

Released October 18, 2024

Page 875

Changes

Combat: Internal options for attack blocking

Fixes

Footsteps: Custom texture name in Materials

Editor: Prevent Variables access in Editor-Mode

Editor: Incorrect name on Finger Screen Position

Editor: Null check for TMP reference

Time: Allow a time scale greater than 1

Removes

Character: Unique Identifier system

646.3 2.15.49

Released July 30, 2024

Page 876

New

Property: Search Component in Children

Property: Search Component in Parents

Property: Character Bone Position

Property: Constant numeric Properties

Instruction: Debug Console Clear

Instruction: Debug Console Show/Hide

Instruction: Change Camera Shot Aim

Instruction: Change Camera Smooth Times

Input: Scroll has direction options

Saving: Caesar encryption cipher

Changes

Cameras: Third Person and First Person Shots

Characters: Turn off smooth angular speed

Markers: Inward option has a dynamic Radius

Saving: Decoupled encryption from storage

Fixes

Property: Get Direction Axis incorrect order

Characters: Incorrect snap when height is not two

Markers: Gizmos not respecting object scale

Saving: Incorrect algorithm when encrypting

Removes

Instruction: Obsolete Camera Shot properties

646.4 2.14.48

Released February 23, 2024

Page 877

Fixes

Characters: Crouching when enabling component

Save: Incorrect order right before loading

Structures: Spatial Hash false negative candidates

Cameras: Input for camera using delta time twice

646.5 2.14.47

New

Property: Direction for Input Action

Property: Decimal for Input Action

Fixes

Regression: States no longer transition properties

Trigger: Flick uses magnitude of Vector 2

646.6 2.14.46

Released January 16, 2024

Released January 10, 2024

Page 878

New

Internal: New high performance spatial hashing

Condition: Is Speech Playing by Target

Condition: Character Fits

Condition: Check Capsule

Instruction: Draw Gizmo Line

Properties: Materials access by Index

Properties: Decimal Condition

Enhances

State: Properties change over time during transition

Changes

Instruction: Enter State uses a animation clip Property

Fixes

Save/Load: Scenes loading twice when loading a game

Save/Load: Invisible exception thrown saving the game

Driver: Navmesh Agent now detects collisions

Driver: Rigidbody radius not reacting on change

Driver: Rigidbody incorrect drag value when airborne

Tweening: Incorrect order when duration is zero

Condition: Box 2D incorrect return value

646.7 2.13.45

Released January 9, 2024

Page 879

This update does not come with any breaking changes. However it requires to uninstall Game Creator first before

upgrading in order to replace the old search engine for the new one.

New

Editor: New search engine

Enhances

Runners: Toggle visibility in Project Settings

Fixes

Script: Incorrect location of some scripts

Property: Get Position Vector axis values

Demos: Characters example wrong jump animation

646.8 2.13.44

New

Instruction: Set Character Busy

Instruction: Set Character Available

Fixes

Load: Ignore loading an empty save slot

Instruction: Change Position incorrect use local/world space

Instruction: Change Rotation incorrect use local/world space

Input: Incorrect empty string check on Action Maps

Camera: Avoid Clipping checks for null ignorers

646.9 2.13.43

Released November 12, 2023

Released November 3, 2023

Page 880

This version comes with new features, but also breaks compatibility with the previous core and submodule versions.

We recommend updating only if you're in a prototyping phase or you're far from releasing your project(s).

In order to upgrade, be sure to backup your project(s) first and uninstall any previous versions of Game Creator and its

modules.

New

Instruction: Hotspots Active

Instruction: Prewarm pool of Game Objects

Instruction: Destroy pool of Game Objects

Instruction: Set Animation Clip

Instruction: Enable Input System Action asset

Instruction: Disable Input System Action asset

Condition: Check OR Conditions list

Condition: Check AND Conditions list

Property: Material type

Property: String with ID format

Property: Decimal have Math operations

Property: Get and Set Sprite Renderer

UX: Favorite Signals stored per-project

Props: Handle asset for handling multiple characters

Variables: Material value references

Variables: Animation Clip value references

Enhances

Performance: Improved performance of Instructions

Camera: Decoupled Avoid Clipping systems

Pooling: Improved performance managing instances

Variables: Drop zones to auto-fill List Variables

Instruction: Move To detects when it gets stuck on a path

Changes

Hotspot: More flexible options

Input: Input Action assets require manual enable/disable

Properties. Faster and new Location system

Properties: Replaced Camera properties with Game Object

Released October 31, 2023

Page 881

Properties: Replaced Shot properties with Game Object

Properties: Rearranged Game Object properties

Scripting: Audio Instructions use Audio Properties

Variables: Use built-in polymorphic serialization

Characters: Jump and Land no longer set Legs as Busy

Fixes

Trigger: Interaction working when Trigger is inactive

Saving: JSON File with Encryption throws error

Staging: Forbid open in play-mode

Editor: Error uninstall module with Settings open

UX: Vertical alignment of elements in Inspector

UX: Use Raycast field expands in Inspector

Instruction: Submit UI uses all components in game object

Character: Screen Center interaction with elements behind

Character: Screen Cursor interaction with elements behind

Saving: Exist differentiates between unloading and destroying

Characters: Player input direction depending on Y axis

Removes

Hotspot: Look at with Focus

Instruction: Change Hotspot Radius

Characters: Twitching an Breathing layers deprecated

Properties: Offset properties are Direction properties

646.10 2.12.42

Page 882

New

Hotspot: Play Audio on Enter/Exit

Condition: Check Audio Effect is Playing

Condition: Variables List is Empty

Condition: Is UI Sound Playing

Condition: Is Music Playing

Condition: Is Ambient Playing

Condition: Is Speech Playing

Property: Check Conditions

Property: Constant Boolean True

Property: Constant Boolean False

Property: Boolean Local/Global List is Empty

Property: Boolean Local/Global List has entries

Property: Rotation Euler by Axis

Character: Rotation Towards Input

Character: Change Is Controllable from State

Character: Option for Simple Ragdoll

Character: Option for No Ragdoll

IK: Ported Look Track system to Animator IK

Enhances

UX: Sorting Lists in the Inspector

UX: Reorganized Axonometry dropdown

UX: Reorganized Hotspots dropdown

Changes

Hotspot: Option With Focus set as a Hotspot field

Character: Decoupled Skeletons and Ragdolls

Fixes

Conditions: Raycast better titles

Camera: Shots use correct orthographic size

Camera: Residual Zoom in Third-Person Shots

Camera: Head Bobbing throwing NaN value

Audio: Stop playing after suspending runtime app

Released August 29, 2023

Page 883

Removes

Hotspot: Look at with Focus

Hotspot: Activate Object with Focus

Hotspot: Instantiate Prefab with Focus

Hotspot: SHow Text with Focus

Camera: Removed preview of Camera Shots

IK: Look Track system with Animation Rigging

Editor: Dependencies with Animation Rigging

646.11 2.11.41

New

Instruction: Change Axonometry

Instruction: Change Audio Source volume

Instruction: Change Audio Source pitch

Hotspot: Activate Game Object

Hotspot: Activate Game Object on Focus

Hotspot: Renamed Activate Prefab to Instantiate Prefab

Enhances

Hotspot: Optional infinite radius value

Changes

Local Variables: Access using Game Object Properties

Fixes

Interaction: Near Mode using wrong Character

Input: Wrong setup when using Input System Actions

Input: Wrong Action selection when retrieving by Map

Input Field not returning TMP component value

Property: Location Character with Offset values

Mobile: Support for Point & Click and Follow Cursor

Global Variables: Not resetting after loading without save

Released June 12, 2023

Page 884

646.12 2.10.40

New

Events: New Command Args entry point

Enhances

Camera: Search for any Camera Shot after setup

Fixes

Editor: Error creating Player from context menu

Input: Loading before scene is set up

Removes

Props: Removed obsolete api

Signals: Removed obsolete api

Location: Removed obsolete api

Editor: Removed obsolete Property Tool class

646.13 2.9.39

Released May 26, 2023

Page 885

New

Instruction: Next Iterator for List Variable

Instruction: Previous Iterator for List Variable

Instruction: Random Iterator for List Variable

Instruction: Calculate Modulus between two numbers

Instruction: Change Mannequin Position

Instruction: Change Mannequin Rotation

Instruction: Change Mannequin Scale

Instruction: Clear Looking Around

Property: Get String of Saved Slot Date

Input: Finger in Screen and World Space

Component: Text Property String UI component

Console: Save/Load Game commands

Enhances

Execution: New execution order for certain components

Fixes

Variables: Not collecting correctly during build

Variables: Reset Game does not reset variables

646.14 2.9.38

Fixes

Settings: Opening during domain reloads

Variables: Initialize before subscribers

Events: Initialize before subscribers

646.15 2.9.37

Released May 25, 2023

Released May 13, 2023

Page 886

New

Console: Runtime console for debugging

Instruction: Log Text on Runtime Console

Instruction: Submit Command to Runtime Console

Instruction: Open/Close/Toggle Runtime Console

Variables: Refresh button in Settings window

Enhances

Examples: New Console example scene

Fixes

Variables: Not loading on standalone builds

Settings: Window missing entries on startup

646.16 2.9.36

Released May 12, 2023

Page 887

New

Instruction: Change Local Variable ID

Instruction: New Dash instruction parameters

Variables: Set at Index uses dynamic property

Driver: Axonometry field for Isometric games

Driver: Axonometry field for Side-Scroller games

Enhances

Execution: Order in which components are initialized

Fixes

Build: Crash when compling to Windows or Android

Font: Incorrect resource font name

Instruction: Move to Transform rotation ignored

Variables: Edge case Global Variables not loading

Trigger: On Blur throws error if object destroyed

Align: Name Variables pick field

Align: Input System pick field

Align: Navigation Area Mask field

Align: Navigation Agent field

Align: Layer Mask field

Repository: Deferred initializing database

Combat: Not set default Target to first Candidate

Touchstick: Icon not appearing on skin asset

646.17 2.9.35

Released May 8, 2023

Page 888

Enhances

Icon: Equated dropdown arrow to standard

Fixes

Build: Forbidden access of m_Dirty member

Align: Labels in Instantiate instruction

Align: List Variables pick field

646.18 2.9.34

Released March 28, 2023

Page 889

New

Settings: Custom scene when loading application

Settings: Displays current and update version

Settings: Notification when there is an update

Instruction: Change Character ID

Instruction: Change Hotspot Radius

Instruction: Set Sprite

Instruction: Set Character Combat Target

Instruction: Clear Character Combat Target

Instruction: Reset Character Vertical Velocity

Instruction: Set Character Invincibility

Instruction: Set Character Poise

Instruction: Cycle to Closest Target

Instruction: Cycle to Next Target

Instruction: Cycle to Previous Target

Instruction: Cycle to Target by Direction

Instruction: Enable/Disable Collider

Instruction: Enable/Disable Renderer

Event: On Change Combat Target

Event: On Change Invincibility

Event: On Dash

Event: On Dodge

Event: On Input Flick

Condition: Is Character Invincible

Condition: Character Raycast Floor

Condition: Compare Vertical Distance

Condition: Compare Horizontal Distance

Property: Character Combat Target

Property: Game Object Floor Position

Property: Get Last Dodge Location

Property: Get Last Dodge Position

Property: Get Poise

Property: Get Defense

Released March 24, 2023

Page 890

Input: Gamepad Left/Right Stick

Input: Mouse Scroll-Wheel

States: Change Motion fields from within States

IK: Aim Towards Rig for First Person mode

Examples: New Interaction and redone some others

Enhances

Variables: Access index with dynamic Property

Instruction: Finer grain control over Dash

Condition: Non-Alloc raycast methods for Physics

Camera: First Person has smoother bobbing and sway

Examples: New model for First Person mode

QoL: Right click to Expand/Collapse items

QoL: Facelift of the Character inspector

Changes

Variables: Save is disabled by default

Event: On Character Step renamed to Character On Step

Event: On Input renamed to On Input Button

Physics: Boolean result when checking raycasts

Fixes

Instruction: Dash wrong left/right fields

Condition: Physics reported opposite result

Footsteps: Avoid creating material instances

Character: Allow zero linear speed

Character: States dangling after Stop if delayed

Character: Missing Avatar changing model in Editor

Character: Incorrect bones when wearing Skinned Meshes

Variables: Conversion from Texture throws exception

Font: Use LegacyRuntime.ttf for Unity 2022.2 or higher

Property: Get/Set Sprite UI Image incorrect name

Editor: Changing Character unit throws error if selected

646.19 2.8.33

Page 891

Fixes

Skeleton: Error in Unity 2022.2 and higher

Camera: Moved execution to Late Update

Camera: Incorrect execution order

646.20 2.8.32

New

Skeleton: Revamped the whole workflow

States: Root Motion for Entry/Exit clips

Event: On Camera Change Shot

Event: On Change to/from Camera Shot

Property: Option to get Character Look Target

Property: Get Character Bone position

Enhances

IK: Feet on ground uses softer values

Hotspots: Show Text can use Text Mesh Pro components

Fixes

Animim: More consistent Gestures system

Animim: States spawned in layered order

Shot: Lock On Camera jitters when close to target

Audio: Forbids playing the same clip at the same frame

Ragdoll: Humanoids without Neck or Chest bones

IK: Looking at a target jitters spinal chain

Variables: Local ones not correctly initialized

Interaction: Control Labels do not properly display

646.21 2.8.31

Released January 31, 2023

Released January 30, 2023

Page 892

New

Dash: new Character settings under Motion

IK: Align Body with Ground

Instruction: Stop Character Dash

Instruction: Change Input Field

Instruction: Move List Variable

Instruction: Change Orthographic Size

Property: Unity Editor Version

Property: Application Version

Enhances

Character: Not allowed to stand on top of others

Instruction: Dash uses improved Dash feature

Shots: Viewport changes use Transitions duration

Icons: New UI icons for common components

Fixes

Variables: Loading missing Global Name Variables

Variables: Loading missing Local Name Variables

Instruction: Cross product operator symbol

Property: Location Game Object uses Markers

Property: Location Game Object with Offset uses Markers

Property: Display hidden labels on some Variables

Gizmos: Error when inspecting a prefab with Gizmo calls

Removes

Property: Get Player Bone Location

Property: Get Player Bone with Offset

646.22 2.8.30

Released January 8, 2022

Page 893

Fixes

Props: Retrocompatibility with previous versions

646.23 2.8.29

New

Instruction: Drop Prop from Character

Instruction: Reset Game

Example: Nested variable access

Enhances

Instruction: Attach Prop accepts direct instance

Instruction: Remove Prop accepts direct instance

Shots: Reduced the amount of unselected gizmos

Changes

Faster Spatial Hash with better layout

Prop system accepts prefabs and instances

Fixes

Ragdoll: Joint constraints use projection

Variables: Error if two variables have same ID

Remember: Error if two Remembers have same ID

Deter IL2CPP from stripping certain assemblies

States example where character does not sit down

646.24 2.7.28

Released December 8, 2022

Released December 8, 2022

Page 894

New

Character: New feet phases curves

Character: New Rigidbody driver controller

Camera: Shots can override camera values

Instruction: Set Vector X/Y/Z value

Condition: Is Foot Phase on Ground

Condition: Is Character Humanoid

Event: On Application Focus

Event: On Application Pause

Event: On Application Quit

Property: Find Game Object by Tag

Property: Constant Zero

Property: Constant One

Property: Round Decimal

Property: Ceiling Decimal

Property: Floor Decimal

Example: Loop List Variables

Changes

Phases: New character foot planting

Character: Jumps with the grounded foot

Removed 'In Background' field on Actions

Removed 'In Background' field on Triggers

Input: Using Enhanced Touch Support

Instructions: Removed activate Shot systems

Camera: Overhauled Shot systems

Character: Split gravity into up/down

Fixes

Condition: Has State in Layer

Memory: Exists game object works again

Hotspot: Not allowing multiple cursor icons

Instruction: Change Position incorrect space

Brake velocity capped to at least 1 unit

Released November 8, 2022

Page 895

Character: Look at feet instead of eyes

Consistent Label width in 2021 LTS

Time scale not reaching zero with transition

646.25 2.6.27

New

Copy-runners for Visual Scripting

Enhances

Support for dropping 3D models improved

States use new Copy-runners

Sequencing uses new Copy-Runners

Fixes

Remember components run after initialization

646.26 2.6.26

Released September 23, 2022

Page 896

New

Instruction: Set Color

Instruction: Lerp between Colors

Instruction: Transition Color to Saturation

Instruction: Transition Color to Lightness

Property: Opposite of Color

Property: Black & White of Color

Enhances

Experimental: Volume uses quadratic roll-off

Fixes

Character squatting due to frame hiccups

Camera Shot generating garbage in Editor

Wrong value when counting List Variables

Renamed Graphics instruction

646.27 2.6.25

Released September 16, 2022

Page 897

New

Instruction: Transform Direction

Instruction: Inverse Transform Direction

Instruction: Transform Point

Instruction: Inverse Transform Point

Event: On Fixed Update

Property: Camera Field of View

Property: Character Model

Enhances

Slight Trigger design facelift

Faster Event System queries

Rearranged Hotspot menu

Redesigned welcome screenshots

Fixes

Save/Load: Leak when destroying Remember

Character: Unable to move/rotate when dead

Inverse Kinematics: Deactivate when is Dead

646.28 2.6.24

Released September 6, 2022

Page 898

New

Instruction: Change Character Time Mode

Instruction: Unfocus UI object

Maximum collect radius set to 500

Screen Width/Height numeric Properties

Enhances

Keywords on visual scripting nodes

Fixes

Instruction: Add Force has space mode

Shot: Third Person direction after transition

Pool sets position before activating

Save/Load wrong format when deleting slots

Time scale affects Character animation

Sequence tool creates empty clips

646.29 2.6.23

Released August 19, 2022

Page 899

New

Character can use Driver/Motion directions

Property: Screen and World cursor positions

Enhances

Touchstick can subclass and override properties

Fixes

Instruction: Transform Change Position

Instruction: Join Text incorrect values

Serializable data structures null error

Error thrown by polymorphic list items

Scroll not appearing on Install window

Order in which SaveLoad system is executed

Copy & Paste multiple times does deep copy

Update serialized object when getting managed

646.30 2.6.22

Released July 7, 2022

Page 900

New

New non-diegetic Music audio channel

Instruction: Play Music

Instruction: Stop Music

Instruction: Change Music Volume

Instruction: Stop all Music

Instruction: Stop all Ambient

Event: On Change Music Volume

Property: Music volume getters and setters

Fixes

Gestures and States ignore time scale

Character physical material crash

Character not saving position/rotation/scale

Instruction: Change Position self space

Condition: Raycasts wrong object reports

Props: Incorrect prefab scale

646.31 2.6.21

Released June 21, 2022

Page 901

New

Option to uninstall modules

Input: Any button

Input: Constant Motion

Instruction: Parent of Game Object

Instruction: Root of Game Object

Property: No Sprite

Character Rotation: Look at Pointer

Variables: Show error if duplicate ID

Changes

Scene Entries decoupled from Instruction

Fixes

Global List Variables collect methods work

Condition: Are Arms Busy incorrect spelling

Serialization error during domain reloads

IK: Deactivate IK Lean at runtime

Navigation: Disable rotation in movement

646.32 2.5.20

Released June 14, 2022

Page 902

New

Named Variables: Nested Access

Settings: Choose how to save game data

Save: Json File option with simple encryption

States: Instructions run on every change

Instruction: Physics 3D Trace Line

Instruction: Physics 3D Overlap Sphere

Instruction: Physics 3D Overlap Box

Instruction: Physics 2D Overlap Circle

Instruction: Physics 2D Overlap Box

Enhances

Spatial Hash algorithm performance

Tweaks on padding on Editor UI

Fixes

Acceleration uses vertical speed

States using wrong duration for entries

646.33 2.5.19

Released May 24, 2022

Page 903

New

Instruction: Increment Number

Instruction: Change RectTransform Width

Instruction: Change RectTransform height

Instruction: Transform Look At

Instruction: Scale Product

Instruction: Change Character Driver

Instruction: Swap List Elements

Instruction: Start Looking At

Instruction: Stop Looking At

Event: On Collide Exit With

Condition: Raycast 3D and 2D

Condition: Is Editor

Condition: Is Batch mode

Condition: Is Console

Condition: Is Mobile

Condition: Check Runtime Platform

Property: Empty String

Property: Rect Transform

Property: Random Audio Clip

Property: Last Collided Enter/Exit

Property: Last Trigger Enter/Exit

Input: Mouse Double Press/Release

Input: Touchscreen Press/Release

Driver: NavmeshAgent has Agent Type exposed

Memory: Exists

Enhances

Footsteps support LOD Groups

Acceleration feels more natural

Keywords for boolean values

Fine-tuned Fuzzy Finder algorithm

Lock characters on a 2D plane

Increased scope of Breathing and Twitching

Released May 12, 2022

Page 904

Breathing and Twitching can be nullified

Offset values default to zero

Fixes

Signals not initialized on AoT platforms

Picking component from a Property reference

Null check before playing Audio Clips

States flicker before playing exit clip

Deep copy when getting Tree children

List picker has dropdown menu title

States using wrong entry Avatar Mask

Exception with uncaught Kernel events

Crash with Rigidbody Driver caused by Material

646.34 2.5.18

New

Condition: Is Character Controllable

Enhances

Scope for changing character rotation state

Fixes

Input: Holding contains release cycle

Input: Renamed properties to follow standard

Template character using incorrect height

Template player checks if is controllable

646.35 2.5.17

Released March 25, 2022

Page 905

New

Condition: Is Input Pressed

Condition: Is Input Released

Condition: Is Input Held Down

Event: On Input Action Press

Event: On Input Action Release

Event: On Input Action Hold

Icons for visual scripting nodes

Changes

Character has a proxy object for model

Fixes

Orphan object destroying a ragdoll character

Settings window elements not appearing

SceneReferene error when building a binary

Skeleton throw null reference exception

646.36 2.4.16

Released March 23, 2022

Page 906

New

Player: Follow Pointer Unit

Instruction: Show/Hide Touchsticks

Instruction: Activate Feet IK

Instruction: Activate Lean IK

Instruction: Activate Look IK

Condition: Has Save at Slot

Event: On Load Game

Event: On Delete Game

Property: Audio Clips

Property: Random Strings

Input: Detection for Press/Release

Support for TreeView API

Changes

Properties return editor references

Smooth in/out landing compression

Fixes

Sync physics with main thread transforms

Changing units when character is selected

Changing model null exception

Locating camera by tag overridden by FindByType

Looping variables works with all types

List selectors not being displayed

Changing character height stutters

Fields alignment in Inspector

Signals throw an error when exiting

Null error after deleting some objects

Spawn prefabs every frame in Point & Click

Changing Is Controllable stops any motion

Greedy systems automatically initialize

Description of surface/volume properties

Instruction: Quit Application exits playmode

Released March 21, 2022

Page 907

646.37 2.3.15

New

Game Creator Toolbar

Signal dispatching

Instruction: Character move to direction

Instruction: Character stop movement

Instructions: Camera Shots

Instruction: Raise Signal

Event: Receive Signal

Event: On Change Audio Volume

Property: Audio Mixer Parameter

Enhances

Run Visual Scripting components from Unity events

Easier to navigate dropdown menus

Footsteps textures mimic character rotation

A Camera Shot can be assigned as the main one

Improved performance of Editor UI elements

Changes

Tree class renamed to Trie

Fixes

Variables now accept integers, floats and doubles

Some events were invoked when the Trigger was disabled

Error thrown with inactive Local Variables

Dead characters don't twitch or breathe anymore

Async Manager exception throw exiting Play-Mode

Settings window compressing overflowing elements

Event: On Click does not execute over UI elements

UI Controls have the UI layer as default

Locations allow to specify the rotation

Procedural animations take into account Time Scale

Released January 28, 2022

Page 908

646.38 2.2.14

New

Shot: New Anchor Peek camera shot

Marker: New Inwards type

Instruction: Play Footstep

Spot: Look on Focus

Shots: Can use easing functions

New deep clone utility to duplicate instances

Properties: Get and Set audio volumes

Enhances

Spots: Disabled while interacting

Spots: Offset option for World and Self space

Event: Lifecycle events have better description

Play button is contextually hidden

Colors have HDR and non-HDR option

Name Variables display non-available options

String Variables can get values from other types

Changes

Instruction: Toggle Bool uses one single property

Fixes

Shots interpolate based on its duration

Event: Characters not registering changes

Prefab Variables error at runtime

Tweening UI elements uses unscaled time

Actions and Triggers catch exceptions

Spatial Hash queries on Markers

646.39 2.1.13

Released December 27, 2021

Page 909

New

Interaction system

Condition: Can Interact

Instruction: Interact

Event: On Focus

Event: On Blur

Event: On change NPC to Player

Event: On change Player to NPC

Spot: Text on Focus

Spot: Object on Focus

Enhances

Leaning IK default values

Character inspector UX

Conditions have more friendly names

Changes

Name of Point and Click button

Motion unit is more compartmentalized

Hide Character gizmos collapsing each unit

Fixes

Spatial Hash returning farther values

646.40 2.0.12

Released December 1, 2021

Page 910

New

Driver: Skin width exposed in Inspector

Ragdoll animations

Enhances

Save/Load format does not use special characters

Fixes

Shot: Lock On ignores Anchor and Target clipping

Event: On Enter NavLink not detected

Event: On Exit NavLink not detected

NavMesh: Agents move between Off-Mesh Links

Scene asset were null in standalone builds

Character: Sinking in ground when using Feet IK

646.41 2.0.11

New

Paste button for Visual Scripting

Instruction: Sort List alphabetically

States: Weight uses a range control

Enhances

Conditions redesign

Focus on search fields automatically

Event: Input distance has offset option

Shot: Lock on includes better default values

Fixes

Airborne animations did not loop correctly

Null check for characters Bone Rack

Released November 24, 2021

Released November 16, 2021

Page 911

646.42 2.0.10

New

Event: On Hover Enter

Event: On Hover Exit

Event: On Select

Event: On Deselect

Event: On Late Update

Event: On Trigger Stay

Condition: Has Prop Attached

Property: Transform Offset

Property: Character Bone

Property: Spherical random point

Property: Rotation of Camera

Input: Interaction

Point and Click examples

Enhances

Right click on Dropdown options to go back

Virtualized TPolymorphicListTool methods

Fixes

Missing scroll in Game Creator Hub

Regression: Point & Click on Player unit

Characters Props out of range access

646.43 2.0.9

Released November 2, 2021

Page 912

New

Input: Mobile virtual joystick support

IK: Lean towards motion direction

Event: On Hotspot Activate

Event: On Hotspot Deactivate

Property: Light Intensity and Range

Enhances

Rendering Pipeline in documentation

Visual Scripting search engine precision

Renamed Example Manager to Install window

Renamed execution events to lifecycle path

Fixes

Character radius out of sync with driver unit

Crouch and Walk string input codes

Memory leak in Camera Shot preview window

Skeleton valid prefab type

Conversion between float and double values

Test Runner using float values

646.44 2.0.8

Released October 20, 2021

Page 913

New

New getters for each Vector3 component

Instruction: Clamp Vector3

Enhances

Examples with higher contrasting textures

Fixes

Null check for gamepads and keyboards

Null check for material _MainTex

Input for walking using crouch settings

Character footstep bones incorrect instance

646.45 2.0.7

New

Start State to Character component

Latest documentation PDF file

Option to run camera in Fixed Update

Dust FX on examples when character lands

Rigidbody character Driver

Instruction: Set Text

Instruction: Text Join

Instruction: Text Replace

Instruction: Text Substring

Enhances

Handling on Character units

Performance on Reflective properties

Fixes

Examples and improved their visuals

Physics engine methods being called every frame

Released October 6, 2021

Released September 27, 2021

Page 914

646.46 2.0.6

New

Tank Controls to characters

Copy & Paste to all lists

Duplicate button to all lists

Faster method to get managed reference values

Get and Set values from Input devices

Get and Set fields using C# Reflection

Get and Set properties using C# Reflection

Event: On Navigation Link Enter

Event: On Navigation Link Exit

Condition: Compare Child Count

Instruction: Remap Coordinates

Instruction: Uniform Scale a Vector3 value

Instruction: Loop List

Fixes

Animator null when changing model in Editor

Audio not taking into account time scale

Incorrect description on some Input methods

Changing kernel units while in play-mode

Global variable access in standalone builds

646.47 2.0.5

Released September 22, 2021

Page 915

New

IsRunning property to Actions and Conditions

Property to search an object by name

Memory: Name

Memory: Tag

Memory: Layers

Memory: Is Active

Memory: Light Color

Memory: Light Intensity

Instruction: Change name of Game Object

Fixes

Point & Click incorrect raycast order

Point & Click ignore over UI game objects

Memories not drawing some properties

Date not parsing using system culture

646.48 2.0.4

New

NavMeshAgent avoidance quality

NavMeshAgent avoidance priority

Fixes

Material Sound error when texture is null

Player not moving without a Main Camera

Description of Usage Input buttons

646.49 2.0.3

Released September 17, 2021

Released September 16, 2021

Page 916

New

Mouse button modifier to Delta Mouse input

Youtube cover image to welcome screen

Fixes

Game Creator Hub paths on Windows

Game Creator Hub package install hierarchy

Examples Manager installer version check

646.50 2.0.2

New

Option to create impacts for Material Sounds

Model position offset to Character animation

Complete & Basic Locomotion States

Instruction: Toggle Active

Bool Property: Does not Exist

Bool Property: Is not Active

Input: Usage/Crouch

Input: Usage/Walk

Fixes

Invalid Hub URL on Windows machines

Invalid Documentation URL

Skeleton asset error when using 3D models

Stop State instruction layer index

Primary motion input with joystick dead-zone

Foot IK disabled during gestures with root-motion

Look IK alignment with target's line of sight

Animation time scale on characters

Released September 14, 2021

Released September 13, 2021

Page 917

646.51 2.0.1

New

First release

Released September 10, 2021

Page 918

II. Inventory

Page 919

647 Inventory

Using items, combining them, crafting new ones or trading them with other characters is at the heart of many

games.

The Inventory module has been meticulously crafted to support a wide variety of situations that involve the use and

management of items.

Get Inventory

The Inventory module is an extension of Game Creator 2 and won't work without it

Requirements

https://gamecreator.link/inventory
https://gamecreator.link/core

Page 920

648 Setup

Welcome to getting started with the Inventory module. In this section you'll learn how to install this module and get

started with the examples which it comes with.

648.1 Prepare your Project

Before installing the Inventory module, you'll need to either create a new Unity project or open an existing one.

It is important to note that Game Creator should be present before attempting to install any module.

648.2 Install the Inventory module

If you haven't purchased the Inventory module, head to the Asset Store product page and follow the steps to get a

copy of this module.

Once you have purchased it, click on Window → Package Manager to reveal a window with all your available assets.

Type in the little search field the name of this package and it will prompt you to download and install the latest stable

version. Follow the steps and wait till Unity finishes compiling your project.

648.3 Examples

We highly recommend checking the examples that come with the Inventory module. To install them, click on the

Game Creator dropdown from the top toolbar and then the Install option.

The Installer window will appear and you'll be able to manage all examples and template assets you have in your

project.

Items: Template items ready to be used in your games

UI: Samples for creating loot user interfaces, inventories, merchants and crafting windows

Examples: A collection of scenes that will help you understand each and every option of the Inventory module, in

an organized and tidy way.

Game Creator

Page 921

The Examples requires both the Items and UI extensions in order to work.

There is also an extra skin for adventure games that allows to swap the default inventory for a typical old-school

point and click inventory.

Clicking on the Examples install button will install all dependencies automatically.

Once you have the examples installed, click on the Select button or navigate to

Plugins/GameCreator/Installs/Inventory.Examples/ .

Dependencies

Page 922

Page 923

II.I Items

Page 924

649 Items

Items are in-game objects that can be added to a Bag, and represent the name and description, properties, visual

representation, and other information that allows to craft, trade, use and equip them.

649.1 Items vs Runtime Items

An Item is a scriptable object that contains all the generic information about a particular item. For example, its name,

its weight, what Item Properties it has and their default values, etc...

A Runtime Item on the other hand, is an instance of an Item that lives in the scene. This instance can be saved

between play-sessions and has specific values to that particular item instance.

Let's say we have an Item called Metal Sword. All Metal Swords will come from the same Item definition. When you give

a Metal Sword to the player, you're creating a Runtime Item of Metal Sword, which can have its own unique values, such

as its own durability that decreases with every impact, for example.

Item and Runtime Item are conceptually similar to Unity's Prefabs and Prefab Instances, respectively. The first one

lives in the project and works as a template, from which you can spawn multiple instances.

649.2 Creating an Item

Items are scriptable objects and to create one, you'll need to right click on the Project Panel and navigate to Create →

Game Creator → Inventory → Item.

Sword Durability

Page 925

An Item asset will appear, with a list of sections that can be expanded or collapsed so it is easy for the user to

modify and organize your items.

The ID value is a unique text that represents an item. When creating a new asset, it will be completely unique.

However, duplicating an existing item will also duplicate the ID and a red message will appear above stating that

there are two items with the same ID.

To solve that, expand the field and click on the Regenerate button to create a new unique ID. You can also type in a

name if you follow a naming convention that ensures that all item IDs are unique.

Page 926

The Prefab field is used to drop/instantiate an item onto the scene. If no prefab is provided, the item will not be

instantiated.

649.2.1 Inheritance

The Parent field allows an item to inherit values from another item, such as Properties and Sockets.

Comparing two items takes into account their parent-child relationship. For example, if Item A inherits from Item B and

a Condition is trying to determine if an object is equal to another one:

A will always return success when comparing if A equals B or equals A.

B will always return success when comparing if B equals B but not to A, because A is further down in the inheritance

chain.

An Item will always return success if asked whether it is equal to itself or any of its parent items.

649.2.2 Information

This section allows to define the Name. Description, Sprite representation and Color of the Item.

Item A equals Item B?

Page 927

All these fields use dynamic properties so their values can be localized.

649.2.3 Shape

The shape of an Item determines the Width and Height the item occupies in the inventory bag, if it's a grid-based

inventory.

It also determines the Weight of the item, in case the bag has a max weight limit.

The Max Stack field determines how many of the exact same item can be stacked one on top of another.

Localization

Page 928

If an Item has one or more Sockets, the Max Stack will be automatically restricted to 1, due to technical constraints.

649.2.4 Price

An Item's trading value is determined by a Currency asset and a numeric value. This value is the total pure one,

without any discounts or modifiers applied.

Note that an item can only be traded using a single currency.

The price of an Item that can have other Items attached is the result of the sum of the price of all Items attached, plus

the price of the Item itself.

For example, if the item Sword has a price of 45 gold and a Magic Rune costs 20 gold pieces, the value of the Sword

with the rune attached will be 65 (45 + 20).

649.2.5 Properties

Properties define mutable values that an item defines. A Property is a data block that is identified by a name and

contains a value and a text that can be used to display information about this item and use it in-game.

Stacking restrictions

One Currency

Sockets

Page 929

The most common use-case of a property is definining the attack power of a weapon. One could easily use an item that

represents a Sword and add a property called attack and has a value of 35.

See more information about this in the Properties page.

649.2.6 Sockets

Sockets allow to attach items onto other items. The type of item that can be attached is determined using item

inheritance.

For example, a socket accepts the item Rune, then all items that inherit from the Rune item will be accepted.

Use case of Properties

Attaching Runes

Page 930

See more information about this in the Sockets page.

649.2.7 Equipping

Some items can be equipped by the wearer (usually the Character with the Bag component).

See more information about this in the Equipping page.

649.2.8 Usage

This section allows to define the behavior of an utility Item which can be used at any given time.

Page 931

A usable item can have a finite or infinite amount of usages. The Consume on Use toggle defines whether an item is

consumed upon use or not.

For example, a Health Potion is consumed when used. However a Whistle can be used many times.

The Can Use conditions are executed every time a runtime item is attempted to be used. If the result is successful,

the item is used.

When an Item is used, the On Use instructions are executed, where Self refers to the game object with the Bag

component the item belongs to, and the Target is the references the wearer of the Bag.

Both the Can Use conditions and the On Use instructions can optionally execute the parent Item's Can Use and On Use

instructions before executing itself.

This is very useful to avoid repeating the same logic over multiple items. For example, if drinking any potion results in

the character executing a particular animation and playing a sound effect, these instructions can be placed in a parent

Item called Potions so each child Item (Health Potion, Mana Potion, ...) does not have to.

649.2.9 Crafting

The Crafting section allows to define recipes to create new Items as well as dismantle them into multiple

ingredients.

Finite vs Infinite usages

Execute From Parent

Page 932

See more information about this in the Crafting page.

Page 933

650 Properties

Properties are mutable values that compose a runtime item. For example, an Item's attack power, its durability or

whether they apply a special effect, such as Burn.

650.1 Creating a new Property

To create a new Property all that needs to be done is to click on the Add Property button.

The Property ID field determines the unique ID of this Property. It is used to identify it, so make sure it's a name that's

easy to remember and type.

Is Hidden determines if a Property is hidden in the UI. For more information, see the Hiding Properties section.

The rest of fields are all optional.

Icon: Provides the Property with a Sprite to be used in user interfaces.

Page 934

Color: Assigns a color to the Property. Useful to differentiate items in user interfaces.

Number: A mutable value that can be used in-game, such as increasing stats.

Text A dynamic value that is usually used to represent the in-game name of the Property.

Mutable is a programming concept which means that the value is dynamic and can be changed at runtime. Immutable,

in contrast, means that its value can't be changed once a value is assigned.

650.2 Inheriting Properties

Checking the Inherit Properties toggle found at the top will automatically inherit all properties from its parent(s).

The value of an inherited Property can be overridden by checking its left toggle and changing the field value.

It is very common to have a type of item that shares the same properties with all its child items. Setting a base value

for the parent item type will make it much easier to define what each sub-item does.

For example, let's say all shield items have a defense value. We could add this property on the base item "Shield" and

propagate this property to all other shields that inherit from this item, and just change the final value, so a "Wooden

Shield" has a lower defense value than a Steel Shield .

650.3 Hiding Properties

When displaying properties in the UI, these can be sequentially displayed, without having to manually set them one

by one. If the Is Hidden checkbox is ticked, these properties will not be displayed in the user interface.

Mutable vs Immutable

Taking advantage of inheritance

Page 935

This is specially useful when a property represents something that the user should not be aware of.

For example, some items could have the is-metal property that determines if an item is a metallic one or not.

Stuff behind the scenes

Page 936

651 Sockets

Sockets allow to attach items onto other items. For example, a Sword can have a socket that allows to attach a Rune

so it increases its properties.

Ticking the Inherit from Parent checkbox will instruct the Item to inherit all Sockets from its parent(s).

The socket section is divided in two parts: The part that defines the object attached to the socket, and the part that

accepts attachments.

651.1 Objects attached to Sockets

The Socket Prefab field accepts a prefab game object, which is instantiated when attaching this Item onto another

Item's Socket.

Inherit Parent Sockets

Page 937

To configure where the prefab is instantiated, the scene prefab object must have a Prop component. This

component automatically updates and correctly instantiates the attachment prefabs in the right places, defined in

the component's Editor.

In this case, the Metal Shield has a Prop component that inserts the instance of a prefab of any attached rune at the

center of the socket.

651.2 Configuration of Sockets

To add a Socket to an item, simply click on the Add Socket button.

Page 938

A Socket is defined by a Base Item that determines which types of objects can be attached to, and a Socket ID,

which is used by the Prop component.

It is important to note that the Base item determines the type of item that the Sockets accepts, not the specific item. In

the example above, it accepts a Rune item, but will also accept any item that has a Rune item parent, such as the Rune

of Attack and Rune of Defense included in the examples.

651.3 How Properties affect Sockets

When attaching an Item onto another one's Socket, only their shared Properties are added.

Let's imagine we have a Sword with a single Property

attack = 10

And a Rune with the following Properties:

attack = 5

defense = 5

Attaching the Rune to the Sword results in the latter have an attack value of 15 (10 + 5), but will ignore the defense

Property because it is not present in the Sword.

Base Item

Sword with a Rune of Attack

Page 939

652 Equipping

To define an equippable Item, the Is Equippable checkbox must be ticked, which enables the rest of the options.

When attempting to equip an Item, the Conditions Can Equip will first be checked.

If it succeeds, it will instantiate the prefab and execute the On Equip instruction list. The Prefab field is the game

object prefab instantated when equipping this particular Item.

Attempting to equip an Item on a slot that is already filled by another Item will automatically unequip the current one so

the new Item can be equipped.

When unequipping an Item it will execute the On Unequip instruction list.

To know more about how to define which Equipment slots are available for a character, see Equipment in the Bag

section.

When executing the Can Equip conditions and the On Equip and On Unequip instructions:

Equipping an item Unequips others

Equipment

Page 940

The Self property references the game object that contains the Item being equipped/unequipped.

The Target references the wearer of the Bag (which usually is the same as the Bag object itself).

It is important to note that when a currently equipped item changes the value of one of its Sockets, it will first

unequip it, change the Socket value and equip it again.

If the Execute From Parent checkbox is marked, the instructions and conditions from the item's parent item will be

executed first (and its parent too, if the parent has Execute From Parent marked).

This is very useful to avoid repeating the same logic over multiple items. For example, if the parent type Swords

contains a Property called attack and all sub-items from Swords have different attack values, there is no need for

all sword sub-items to add a Stat Modifier with that property.

Instead, the Swords item can execute the common logic between all swords, and each sub-item just needs to have the

Execute From Parent checkbox enabled.

Execute From Parent

Page 941

653 Crafting

The Crafting section both defines a way to craft the Item being examined, as well as tear it apart and dismantle it

into multiple Items.

There are 3 distinct sections inside the Crafting tab.

653.1 Ingredients

Ingredients are Items that can be used to craft the current one, or dismantle it into these ingredients.

To create a new Ingredient click on the Add Ingredient.

Page 942

This will create a new ingredient entry with an Item field and the amount of those necessary.

There is no limit to the amount of Ingredients you can create.

653.2 Craft

When attempting to craft an Item it will first check if the Conditions are sufficient. If so, it will then require a certain

amount of Ingredients defined.

If there are enough ingredients, these will be subtracted from the Bag.

Leaving the Conditions field empty will always return success and means there are no conditions to craft it, outside

from the Igredients.

Once the Conditions and Ingredients requirements are fulfilled, it will create a new instance of the Item and add it to

the Bag.

Afterwards, it will call the Instructions, in case the designer wants to do something afterwards, such as increasing

the proficiency of the Player in crafting.

653.3 Dismantle

Dismantling an Item is the inverse process of Crafting: Instead of creating the current Item from a collection of

Ingredients, it destroys the Item and reclaim the Ingredients.

Infinite ingredients

Empty Conditions

Page 943

When Dismantling an Item there is a Reclaim Chance value that determines the chance to recover each of the

Ingredients. A value of 1 will always recover all ingredients, while a value of 0.5 will only have a chance to recover

around 50% of them.

Reclaim Probability

Page 944

II.II Bags

Page 945

654 Bags

A Bag is a component that can be attached to any game object, and contains Items and Currencies.

The Inventory module comes with 2 types of Bags:

List: Sequentially displays the items one after the other and all occupy the same amount of space.

Grid: Each item occupies a certain amount of cells and these can be manually arranged inside the inventory grid-

view.

We recommend sticking with the List type, as it is easier to understand and manage. Grid inventory systems should be

only used by experienced users.

To change the type of Bag click on the right-side arrow button and choose the type from the dropdown menu.

654.1 Bag Options

A Bag can define a Maximum Weight and a Maximum Height.

If a maximum height is defined, there is a maximum amount of Items it can hold.

Recommendation

Page 946

If a maximum weight is defined, if the sum of all Item's weight exceeds the maximum value, the Bag is considered

overloaded.

It is important to note that a Bag can't exceed a maximum amount of height (if any is defined). However, a Bag will still

accept new Items even if its content weight exceeds the maximum weight defined.

654.2 Equipment

The Equipment field is an optional value that accepts an Equipment Asset. If provided, it allows the wearer of the

Bag to equip Items.

To know more about how to configure it, see the Equipment section.

654.3 Stock and Wealth

Some Bags may contain a certain amount of Items and Currency by default. For example, a Merchant may have

some default stock available.

Clicking on the Add Stock button creates a new Stock option that accepts an Item and a certain amount of it.

Clicking on the Add Wealth button creates a new Wealth option that accepts a Currency and its value.

Too much weight

Page 947

A Bag can also be used as a Chest where the player loots its contents. To generate random loot, we recommend using

Loot Tables, instead of Stock options.

654.4 Skin UI

The Skin UI field is a UI skin asset that displays a different type of user interface that depends on what the purpose

of the Bag is. For example, a Bag attached to the Player character could display an Inventory UI, while a Chest

displays a UI with its content and a button to transfer all of them to the Player's bag.

To know more about designing custom skins, see the User Interface section.

654.5 Wearer

The Wearer selector refers to the targeted game object that wears the Bag's equipment. By default it is set to Self

because the Bag is usually attached along the Character component. However, if for some reason that is not the

case, you can choose which character should be targeted as the equipment wearer.

Random Loot

Custom Skins

Page 948

655 Equipment

The Equipment asset is a scriptable object that lives in the Project Panel which contains information about the

amount of equippable slots and what bone matches each one of them.

655.1 The Equipment Asset

To create an Equipment asset, right click on the Project Panel and select Create → Game Creator → Inventory →

Equipment.

An Equipment initially has no equipment. Click on the Add Equipment Slot button to add a new slot.

An equipment slot has a Base Item and a Bone reference.

Page 949

The Base Item is the type of Item it accepts. For example, if all Helmets inherit from a Head item, using the Head

template item will allow to equip all helmets in this slot.

The Bone is a reference to the chosen skeletal bone. If the targeted character is a Humanoid, the bone can be

picked from a dropdown list. If the character is a non-humanoid, the bone must be referenced using its hierarchy

path.

655.2 Using the Equipment

Once the Equipment asset is created, this can be linked to a Bag component so the character knows which

equipment slots it has available and where each is mapped to which bone.

Page 950

For example, the equipment that comes with the Inventory module has 4 equippable slots (head, body, right and left

hand), plus three extra slots for consumable items:

We can assign this Equipment asset to a Bag and all available slots will appear below.

Example

Page 951

After assigning an Equipment asset to a Bag, the bone that is linked to each slot can be overridden. This is specially

useful for non-humanoids, where their bone hierarchy names might not match.

Page 952

656 Loot Tables

Loot Tables are probablility sheets that when executed, pick an option from its entries based on a weighted chance

and send the chosen element (if any at all) to a Bag component.

To create one, right click on the Project Panel and select Create → Game Creator → Inventory → Loot Table.

To add a new loot entry, click on the Add Loot button. A new entry will appear with the following options:

Rate: A number that represents the weight of the chance. The higher the value, the greater the chance.

Loot: A dropdown that allows to pick an Item or a Currency.

Amount: The amount picked if the entry is chosen. It can either be a constant value or a random one.

It is important to note the distinction between a Rate (or weight) and a probability percentage.

The Rate depends on the total sum of all rates from all entries. For example, two entries with a Rate of 1 is equal to two

entries with a Rate of 5. In both cases, the chance of picking them is 50%.

Weight vs Probability

Page 953

Optionally there is a No Drop Rate field that enables the Loot Table to pick nothing.

To execute a Loot Table it is as easy as using the Loot Table instruction and choosing both a Loot Table asset and

the targeted Bag where the items/currency will be sent to.

Note that each time a Loot Table is executed, it picks one entry from the table. A Loot Table can be used multiple times

in sequence to fill, for example, a Chest with multiple items.

One easy way to randomize the loot of a level is to populate them with a Chest prefab that has an On Start Trigger. This

Trigger then runs one or more times a Loot Table and sends its contents to the Chest's Bag component.

This allows to very easily populate all the Chests of a level with different content, while at the same time controlling the

kind of content they contain.

Run multiple times

Chest with Random Loot

Page 954

657 Currencies

To determine the value of an Item, Game Creator uses the concept of Currency.

A Currency is an asset that contains one or more Coins. Each Coin has a value relative to a single unit. To create

one, right click on the Project Panel and select Create → Game Creator → Inventory → Currency.

Most games make use of a single Currency. However, some mobile games and hard-core resource management

games use multiple ones.

In the example above, the Currency just has a single Coin called Gold which value is 1. This is the most simple

currency one can create and it's the most commonly used in most games.

It is important to note that a currency cannot have a decimal value. If you wish to represent a value with 2 decimals,

one can multiple the value x100 and then shift the comma two units left.

Single Currency

No decimals

Page 955

However, some games make use of a multi-coin Currency where each coin represents a different value.

Let's say we are making a game where the currency has three different coins, each with a different value:

A Copper coin is the smallest one.

A Silver coin is equal to 25 of Copper coins.

A Gold coin is equal to 5 Silver coins.

In that case, we would create a Currency asset with three coins:

Copper: Is the smallest possible value, so it has a value of 1.

Silver: Is equal to 25 copper coins, so it has a value of 25.

Gold: Is equal to 5 silver coins, which cost 25 copper coins each, so it has a value of 125.

It is important to note that when adding or subtracting a value of a particular Currency the value used is relative to

the unit. Following the example above, if we want to give one Gold Coin to the Player, we simply increase its wealth

by 125.

Copper, Silver and Gold

Page 956

658 Merchants

The Inventory module comes with a built-in system that allows two Bags to trade their contents in exchange for a

specified Currency.

658.1 Merchant Component

To initiate a trade between two Bags, one of them (the merchant) must have a Merchant component attached along

a Bag component.

The Bag component provides the stock of items available.

The Merchant component determines the type of transactions made.

Page 957

658.1.1 Merchant Info

The Merchant Info section allows to give the Merchant a name and a description. This is completely optional, but can

be useful to display the type of trading made by a certain Merchant.

For example, having a merchant called Herbologist already gives a clue of the type of Items this merchant trades with.

658.1.2 Configuration

Infinite Currency: If checked, the Merchant will have an infinite amount of currency supply to buy Items from the

client (Player). Otherwise it will use the Bag's wealth.

Example

Page 958

Infinite Stock: If checked, the number of available Items will not decrease after the client (Player) purchases

them. Otherwise, the available stock decreases with each purchase made.

Allow Buy Back: If checked, every Item sold by the client (Player) is automatically added to the Merchant's stock.

Otherwise, any Item sold cannot be recovered.

Sell Niche Type: If checked, it allows to filter the type of Items sold by this merchant, regardless of its Bag

content. For example, if a Merchant only sells Herbs, even if its Bag contains a Sword, it will not be available for

sale.

The Buy Rate is the discount coefficient that the Merchant provides when buying Items from the client (Player). A

value of 1 indicates the Items sold have no discount. To provide a 90% discount on all Items, this field should be set

to 0.9.

The Sell Rate is the coefficient applied when the Merchant purchases Items from the client (Player). In most games,

the selling price of an Item is lower (commonly half the price) than its real one.

The Bag field is a reference to the Bag component from where the Merchant takes its stock.

If your Bag is placed along another game object, you can change the value of this field from Self to Bag and manually

reference the correct object.

Skin UI is the user interface skin used by this merchant.

Reference a Bag

Page 959

659 Tinkering

The process of transforming items into other ones is called Tinkering, which includes:

Crafting: Creating a single item from multiple ones.

Dismantling: Destroying an item in order to recover multiple ones.

To open a Crafting or Dismantle interface, use the Open Tinker UI instruction.

This instruction uses a Tinker Skin that determines whether the UI crafts new items or dismantles existing ones.

Page 960

The Input Bag and Output Bag are the bags used by the tinker process. In most games, both bag references will

match, but there might be some cases where the game outputs the new items onto another bag, from where the

player can pick them.

The Filter Item field determines the type of items displayed.

Blacksmithing and brewing potions use the exact same process. The only difference between an Alchemy station and a

Forge is that the first one filters the types of items to craft by Potion type and the latter filters by Equipment type.

To know more about how to create your own custom tinkering UI elements, see the Tinker UI section and the

examples that come with the Inventory module.

Filtering by Type

Page 961

II.III Visual Scripting

Page 962

660 Visual Scripting

The Inventory module symbiotically works with Game Creator and the rest of its modules using its visual scripting

tools.

Instructions

Conditions

Events

Each scripting node allows other modules to use any Inventory feature, and adds a list of Properties ready to be

used by other interactive elements.

Page 963

II.III.I Conditions

Page 964

661 Conditions

661.1 Sub Categories

Inventory

Page 965

II.III.I.I Inventory

Page 966

662 Inventory

662.1 Sub Categories

Bags

Cooldowns

Equipment

Merchant

Properties

Tinker

Ui

Wealth

662.2 Conditions

Can Add

Has Item

Has Runtime Item

Is Overloaded

Is Type Of Item

Is Usable

Page 967

663 Can Add

663.1 Description

Returns true if the item can be added to the Bag component

663.2 Parameters

Name Description

Item The item type to add

To Bag The target destination Bag

663.3 Keywords

Inventory Give Put Set

Inventory » Can Add

Page 968

664 Has Item

664.1 Description

Returns true if the Bag component contains, at least, the specified amount of an item

664.2 Parameters

Name Description

Item The item type to check

Amount The minimum amount of a particular item

Bag The targeted Bag

664.3 Keywords

Inventory Contains Includes Wears Amount

Inventory » Has Item

Page 969

665 Has Runtime Item

665.1 Description

Returns true if the Bag component contains the Item instance

665.2 Parameters

Name Description

Runtime Item The item instance to check

Bag The targeted Bag

665.3 Keywords

Inventory Contains Includes Wears

Inventory » Has Runtime Item

Page 970

666 Is Overloaded

666.1 Description

Returns true if the Bag's maximum weight is surpassed

666.2 Parameters

Name Description

Bag The Bag component

666.3 Keywords

Inventory Weight Amount

Inventory » Is Overloaded

Page 971

667 Is Type of Item

667.1 Description

Returns true if the item is equal or a sub-type of another one

667.2 Parameters

Name Description

Item The item source

Compare To The item compared to

667.3 Keywords

Inventory Compare

Inventory » Is Type of Item

Page 972

668 Is Usable

668.1 Description

Returns true if the chosen Item can be used

668.2 Parameters

Name Description

Item The item type to check

668.3 Keywords

Inventory Consume Drink

Inventory » Is Usable

Page 973

II.III.I.I.I BAGS

Page 974

669 Bags

669.1 Conditions

Enough Space

Page 975

670 Enough Space

670.1 Description

Returns true if the item can be added to the Bag component

670.2 Parameters

Name Description

Bag The Bag to check

Min Space The minimum amount of free spaces

670.3 Keywords

Inventory Has Free Available Full Empty

Inventory » Bags » Enough Space

Page 976

II.III.I.I.II COOLDOWNS

Page 977

671 Cooldowns

671.1 Conditions

Is Item Cooldown

Is Runtime Item Cooldown

Page 978

672 Is Item Cooldown

672.1 Description

Returns true if the Bag's Item is currently on a cooldown state

672.2 Parameters

Name Description

Bag The Bag targeted

Item The Item that checks its cooldown state

672.3 Keywords

Bag Cooldown Timer Timeout

Inventory » Cooldowns » Is Item Cooldown

Page 979

673 Is Runtime Item Cooldown

673.1 Description

Returns true if the Bag's Runtime Item is currently on a cooldown state

673.2 Parameters

Name Description

Runtime Item The Runtime Item that checks its cooldown state

673.3 Keywords

Bag Cooldown Timer Timeout

Inventory » Cooldowns » Is Runtime Item Cooldown

Page 980

II.III.I.I.III EQUIPMENT

Page 981

674 Equipment

674.1 Conditions

Can Equip

Is Equipment Slot Free

Is Equippable

Is Equipped

Is Runtime Item Equipped

Page 982

675 Can Equip

675.1 Description

Returns true if the chosen Item can be equipped by the targeted Bag's wearer

675.2 Parameters

Name Description

Item The item type to check

Bag The targeted Bag

675.3 Keywords

Inventory Contains Includes Wears Amount

Inventory » Equipment » Can Equip

Page 983

676 Is Equipment Slot Free

676.1 Description

Returns true if the Bag's equipment slot does not have any Item assigned

676.2 Parameters

Name Description

Bag The targeted Bag component

Equipment Slot The Equipment slot to check

676.3 Keywords

Inventory Wears Slot Hotbar

Inventory » Equipment » Is Equipment Slot Free

Page 984

677 Is Equippable

677.1 Description

Returns true if the chosen Item can be equipped

677.2 Parameters

Name Description

Item The item type to check

677.3 Keywords

Inventory Wear Equip

Inventory » Equipment » Is Equippable

Page 985

678 Is Equipped

678.1 Description

Returns true if the Bag's wearer has an Item of that type currently equipped

678.2 Parameters

Name Description

Item The item type to check

Bag The targeted Bag

678.3 Keywords

Inventory Wears

Inventory » Equipment » Is Equipped

Page 986

679 Is Runtime Item Equipped

679.1 Description

Returns true if the Bag's wearer has the Runtime Item currently equipped

679.2 Parameters

Name Description

Runtime Item The Runtime Item to check

679.3 Keywords

Inventory Wears

Inventory » Equipment » Is Runtime Item Equipped

Page 987

II.III.I.I.IV MERCHANT

Page 988

680 Merchant

680.1 Conditions

Can Buy

Can Sell

Page 989

681 Can Buy

681.1 Description

Returns true if the item can be bought from a Merchant

681.2 Parameters

Name Description

From Merchant The Merchant component

Item The item type attempted to purchase

To Bag The destination Bag for the item

681.3 Keywords

Inventory Purchase Get Bargain Haggle

Inventory » Merchant » Can Buy

Page 990

682 Can Sell

682.1 Description

Returns true if the item can be sold to a Merchant

682.2 Parameters

Name Description

From Bag The Bag where the item is sold

Item The item type attempted to sell

To Merchant The Merchant target

682.3 Keywords

Inventory Vend Trade Exchange Part Bargain Haggle

Inventory » Merchant » Can Sell

Page 991

II.III.I.I.V PROPERTIES

Page 992

683 Properties

683.1 Conditions

Item Has Property

Runtime Item Has Property

Page 993

684 Item has Property

684.1 Description

Returns true if the chosen Item has the specified item Property

684.2 Parameters

Name Description

Item The item type to check

Property The item property

684.3 Keywords

Inventory Contains Exists

Inventory » Properties » Item has Property

Page 994

685 Runtime Item has Property

685.1 Description

Returns true if the chosen Runtime Item has the specified item Property

685.2 Parameters

Name Description

Runtime Item The Runtime Item type to check

Property ID The item property ID to check

685.3 Keywords

Inventory Contains Exists

Inventory » Properties » Runtime Item has Property

Page 995

II.III.I.I.VI TINKER

Page 996

686 Tinker

686.1 Conditions

Can Craft

Can Dismantle

Enough Ingredients

Is Craftable

Is Dismantable

Page 997

687 Can Craft

687.1 Description

Returns true if the item can be crafted

687.2 Parameters

Name Description

From Bag The Bag where ingredients are picked

Item The item type attempted to craft

To Bag The target destination Bag after creating the new Item

687.3 Keywords

Inventory Create Make Cook Smith Combine Assemble

Inventory » Tinker » Can Craft

Page 998

688 Can Dismantle

688.1 Description

Returns true if the item can be dismantled

688.2 Parameters

Name Description

From Bag The Bag where item is picked

Item The item type attempted to dismantle

To Bag The destination Bag for all ingredients after dismantling the Item

688.3 Keywords

Inventory Apart Disassemble Deconstruct Tear Separate

Inventory » Tinker » Can Dismantle

Page 999

689 Enough Ingredients

689.1 Description

Returns true if the item can be crafted

689.2 Parameters

Name Description

From Bag The Bag where ingredients are picked

Item The item type attempted to craft

689.3 Keywords

Inventory Create Make Cook Smith Combine Assemble

Inventory » Tinker » Enough Ingredients

Page 1000

690 Is Craftable

690.1 Description

Returns true if the chosen Item can be crafted

690.2 Parameters

Name Description

Item The item type to check

690.3 Keywords

Inventory Create Forge Alchemy Brew

Inventory » Tinker » Is Craftable

Page 1001

691 Is Dismantable

691.1 Description

Returns true if the chosen Item can be dismantled

691.2 Parameters

Name Description

Item The item type to check

691.3 Keywords

Inventory Destroy Tear Break

Inventory » Tinker » Is Dismantable

Page 1002

II.III.I.I.VII UI

Page 1003

692 Ui

692.1 Conditions

Is Bag Ui Open

Is Merchant Ui Open

Is Tab Ui Active

Is Tinker Ui Open

Page 1004

693 Is Bag UI Open

693.1 Description

Returns true if the there is a Bag UI open

693.2 Keywords

Inventory Close Stash Loot Container Chest

Inventory » UI » Is Bag UI Open

Page 1005

694 Is Merchant UI Open

694.1 Description

Returns true if the there is a Merchant UI open

694.2 Keywords

Shop Exchange Trader

Inventory » UI » Is Merchant UI Open

Page 1006

695 Is Tab UI Active

695.1 Description

Returns true if the chosen Tab UI component is currently active

695.2 Keywords

Shop Exchange Trader

Inventory » UI » Is Tab UI Active

Page 1007

696 Is Tinker UI Open

696.1 Description

Returns true if the there is a Crafting/Dismantling UI open

696.2 Keywords

Close Craft Dismantle Assemble Disassemble Smith Upgrade

Inventory » UI » Is Tinker UI Open

Page 1008

II.III.I.I.VIII WEALTH

Page 1009

697 Wealth

697.1 Conditions

Compare Wealth

Page 1010

698 Compare Wealth

698.1 Description

Returns true if a comparison between the wealth and another integer is satisfied

698.2 Parameters

Name Description

Bag The Bag component with the Wealth being compared

Currency The currency type to compare

Comparison The comparison operation performed between both values

Compare To The integer value that is compared against

698.3 Keywords

Price Money Cash Currency Coin Gold

Inventory » Wealth » Compare Wealth

Page 1011

II.III.II Events

Page 1012

699 Events

699.1 Sub Categories

Inventory

Page 1013

II.III.II.I Inventory

Page 1014

700 Inventory

700.1 Sub Categories

Currency

Equipment

Merchant

Sockets

Tinker

Ui

700.2 Events

On Add

On Drop Item

On Instantiate Item

On Remove

Page 1015

701 On Add

701.1 Description

Executes after adding an item to the specified Bag

701.2 Keywords

Bag Inventory Item Add

Inventory » On Add

Page 1016

702 On Drop Item

702.1 Description

Detects when a Bag's item is dropped onto the Trigger

Inventory » On Drop Item

Page 1017

703 On Instantiate Item

703.1 Description

Executes after dropping an item from a Bag to the scene

Inventory » On Instantiate Item

Page 1018

704 On Remove

704.1 Description

Executes after removing an item from the specified Bag

704.2 Keywords

Bag Inventory Item Take

Inventory » On Remove

Page 1019

II.III.II.I.I CURRENCY

Page 1020

705 Currency

705.1 Events

On Change Currency

Page 1021

706 On Change Currency

706.1 Description

Detects when a Bag's Currency value changes

Inventory » Currency » On Change Currency

Page 1022

II.III.II.I.II EQUIPMENT

Page 1023

707 Equipment

707.1 Events

On Equip

On Unequip

Page 1024

708 On Equip

708.1 Description

Executes after equipping an item from the specified Bag

708.2 Keywords

Bag Inventory Item Add Wear

Inventory » Equipment » On Equip

Page 1025

709 On Unequip

709.1 Description

Executes after unequipping an item from the specified Bag

709.2 Keywords

Bag Inventory Item Remove Wear

Inventory » Equipment » On Unequip

Page 1026

II.III.II.I.III MERCHANT

Page 1027

710 Merchant

710.1 Events

On Buy

On Sell

Page 1028

711 On Buy

711.1 Description

Executes after successfully purchasing an item from any Merchant

Inventory » Merchant » On Buy

Page 1029

712 On Sell

712.1 Description

Executes after successfully selling an item to any Merchant

Inventory » Merchant » On Sell

Page 1030

II.III.II.I.IV SOCKETS

Page 1031

713 Sockets

713.1 Events

On Socket Attach

On Socket Detach

Page 1032

714 On Socket Attach

714.1 Description

Detects when an Item's Socket gets another Item attached

Inventory » Sockets » On Socket Attach

Page 1033

715 On Socket Detach

715.1 Description

Detects when an Item is detached from another Item's Socket

Inventory » Sockets » On Socket Detach

Page 1034

II.III.II.I.V TINKER

Page 1035

716 Tinker

716.1 Events

On Craft

On Dismantle

Page 1036

717 On Craft

717.1 Description

Executes right after successfully crafting any item

Inventory » Tinker » On Craft

Page 1037

718 On Dismantle

718.1 Description

Executes right after successfully dismantling any item

Inventory » Tinker » On Dismantle

Page 1038

II.III.II.I.VI UI

Page 1039

719 Ui

719.1 Events

On Close Bag Ui

On Close Merchant Ui

On Close Tinker Ui

On Open Bag Ui

On Open Merchant Ui

On Open Tinker Ui

Page 1040

720 On Close Bag UI

720.1 Description

Detects when a Bag UI is closed

Inventory » UI » On Close Bag UI

Page 1041

721 On Close Merchant UI

721.1 Description

Detects when a Merchant UI is closed

Inventory » UI » On Close Merchant UI

Page 1042

722 On Close Tinker UI

722.1 Description

Detects when a Tinker UI is closed

Inventory » UI » On Close Tinker UI

Page 1043

723 On Open Bag UI

723.1 Description

Detects when a Bag UI is opened

Inventory » UI » On Open Bag UI

Page 1044

724 On Open Merchant UI

724.1 Description

Detects when a Merchant UI is opened

Inventory » UI » On Open Merchant UI

Page 1045

725 On Open Tinker UI

725.1 Description

Detects when a Tinker UI is opened

Inventory » UI » On Open Tinker UI

Page 1046

II.III.III Instructions

Page 1047

726 Instructions

726.1 Sub Categories

Inventory

Page 1048

II.III.III.I Inventory

Page 1049

727 Inventory

727.1 Sub Categories

Bags

Cooldowns

Currency

Equipment

Loot

Sockets

Ui

Variables

Page 1050

II.III.III.I.I BAGS

Page 1051

728 Bags

728.1 Instructions

Add Item

Add Runtime Item

Drop Item

Drop Runtime Item

Increment Bag Height

Increment Bag Width

Move Content To Bag

Move Wealth To Bag

Remove Item

Remove Runtime Item

Page 1052

729 Add Item

729.1 Description

Creates a new item and adds it to the specified Bag

729.2 Parameters

Name Description

Item The type of item created

Bag The targeted Bag component

729.3 Keywords

Bag Inventory Container Stash Give Take Borrow Lend Buy Purchase Sell Steal Rob

Inventory » Bags » Add Item

Page 1053

730 Add Runtime Item

730.1 Description

Adds an existing instance of an Item and adds it to the specified Bag

730.2 Parameters

Name Description

Runtime Item The existing Item instance

Bag The targeted Bag component

730.3 Keywords

Bag Inventory Container Stash Give Take Borrow Lend Buy Purchase Sell Steal Rob

Inventory » Bags » Add Runtime Item

Page 1054

731 Drop Item

731.1 Description

Drops an Item type from a Bag onto the scene

731.2 Parameters

Name Description

Item The type of item created

Bag The targeted Bag component

Distance The distance from the Bag where the Item is dropped

731.3 Keywords

Leave Eliminate Take

Inventory » Bags » Drop Item

Page 1055

732 Drop Runtime Item

732.1 Description

Drops a Runtime Item from its Bag onto the scene

732.2 Parameters

Name Description

Runtime Item The instance of an Item dropped

Distance The distance from the Bag where the Item is dropped

732.3 Keywords

Leave Eliminate Take

Inventory » Bags » Drop Runtime Item

Page 1056

733 Increment Bag Height

733.1 Description

Increases the amount of rows a Bag has, if possible

733.2 Parameters

Name Description

Bag The targeted Bag component

Rows The number of rows to increment by

733.3 Keywords

Bag Inventory Container Stash Column Size

Inventory » Bags » Increment Bag Height

Page 1057

734 Increment Bag Width

734.1 Description

Increases the amount of columns a Bag has, if possible

734.2 Parameters

Name Description

Bag The targeted Bag component

Columns The number of columns to increment by

734.3 Keywords

Bag Inventory Container Stash Column Size

Inventory » Bags » Increment Bag Width

Page 1058

735 Move Content to Bag

735.1 Description

Moves all the contents of a Bag to another Bag

735.2 Parameters

Name Description

From Bag The Bag component where its contents are removed

To Bag The targeted Bag component where the contents end up

735.3 Keywords

Bag Inventory Container Stash Chest Take All Give Take Borrow Lend Buy Purchase Sell Steal

Rob

Inventory » Bags » Move Content to Bag

Page 1059

736 Move Wealth to Bag

736.1 Description

Moves all wealth from one Bag to another one

736.2 Parameters

Name Description

From Bag The Bag component where its wealth is taken from

To Bag The targeted Bag component where the wealth ends up

736.3 Keywords

Bag Inventory Container Stash Chest Take All Give Take Borrow Lend Buy Purchase Sell Steal

Rob Currency Cash Money Coins

Inventory » Bags » Move Wealth to Bag

Page 1060

737 Remove Item

737.1 Description

Removes an Item from the specified Bag

737.2 Parameters

Name Description

Item The parent type of item to be removed

Bag The targeted Bag component

737.3 Keywords

Bag Inventory Container Stash Give Take Borrow Lend Buy Purchase Sell Steal Rob

Inventory » Bags » Remove Item

Page 1061

738 Remove Runtime Item

738.1 Description

Removes an Item instance from its associated Bag

738.2 Parameters

Name Description

Runtime Item The item instance to be removed

738.3 Keywords

Bag Inventory Container Stash Give Take Borrow Lend Buy Purchase Sell Steal Rob

Inventory » Bags » Remove Runtime Item

Page 1062

II.III.III.I.II COOLDOWNS

Page 1063

739 Cooldowns

739.1 Instructions

Add Item Cooldown

Add Runtime Item Cooldown

Clear Cooldowns

Reset Item Cooldown

Reset Runtime Item Cooldown

Page 1064

740 Add Item Cooldown

740.1 Description

Adds a cooldown timer for a Bag's Item

740.2 Parameters

Name Description

Bag The Bag where the Item belongs to

Item The Item asset to add its cooldown

740.3 Keywords

Bag Cooldown Timer Timeout

Inventory » Cooldowns » Add Item Cooldown

Page 1065

741 Add Runtime Item Cooldown

741.1 Description

Adds a cooldown timer for a Runtime Item's Bag

741.2 Parameters

Name Description

Runtime Item The Runtime Item instance to add a cooldown

741.3 Keywords

Bag Cooldown Timer Timeout

Inventory » Cooldowns » Add Runtime Item Cooldown

Page 1066

742 Clear Cooldowns

742.1 Description

Removes all cooldowns on a Bag

742.2 Parameters

Name Description

Bag The Bag where all cooldowns are removed from

742.3 Keywords

Bag Cooldown Timer Timeout

Inventory » Cooldowns » Clear Cooldowns

Page 1067

743 Reset Item Cooldown

743.1 Description

Removes the cooldown timer of a Bag's Item

743.2 Parameters

Name Description

Bag The Bag where the Item belongs to

Item The Item asset to reset its cooldown

743.3 Keywords

Bag Cooldown Timer Timeout

Inventory » Cooldowns » Reset Item Cooldown

Page 1068

744 Reset Runtime Item Cooldown

744.1 Description

Removes the cooldown timer of the Runtime Item's Bag

744.2 Parameters

Name Description

Item The Runtime Item instance to reset its cooldown

744.3 Keywords

Bag Cooldown Timer Timeout

Inventory » Cooldowns » Reset Runtime Item Cooldown

Page 1069

II.III.III.I.III CURRENCY

Page 1070

745 Currency

745.1 Instructions

Change Currency

Page 1071

746 Change Currency

746.1 Description

Modifies the value of a Bag's currency

746.2 Parameters

Name Description

Currency The currency type to modify

Amount The value and operation performed

Bag The targeted Bag component

746.3 Keywords

Bag Inventory Container Stash Give Take Borrow Lend Buy Purchase Sell Steal Rob Coin Cash

Bill Value Money

Inventory » Currency » Change Currency

Page 1072

II.III.III.I.IV EQUIPMENT

Page 1073

747 Equipment

747.1 Instructions

Equip Item

Equip Runtime Item

Unequip Item

Unequip Runtime Item

Page 1074

748 Equip Item

748.1 Description

Equips an Item from the Bag that inherits from the specified type

748.2 Parameters

Name Description

Item The parent type of item to equip

Bag The targeted Bag component

748.3 Keywords

Bag Inventory Equipment Put Wear Inventory Wield

Inventory » Equipment » Equip Item

Page 1075

749 Equip Runtime Item

749.1 Description

Equips the specified Runtime Item

749.2 Parameters

Name Description

Runtime Item The item instance to equip

749.3 Keywords

Bag Inventory Equipment Put Wear Inventory Wield

Inventory » Equipment » Equip Runtime Item

Page 1076

750 Unequip Item

750.1 Description

Unequip an Item from the Bag that inherits from the specified type

750.2 Parameters

Name Description

Item The parent type of item to equip

Bag The targeted Bag component

750.3 Keywords

Bag Inventory Equipment Take Sheathe Inventory Remove

Inventory » Equipment » Unequip Item

Page 1077

751 Unequip Runtime Item

751.1 Description

Unequip an Item instance that is currently equipped

751.2 Parameters

Name Description

Runtime Item The Item instance to unequip

751.3 Keywords

Bag Inventory Equipment Take Sheathe Inventory Remove

Inventory » Equipment » Unequip Runtime Item

Page 1078

II.III.III.I.V LOOT

Page 1079

752 Loot

752.1 Instructions

Instantiate Item

Loot Table

Page 1080

753 Instantiate Item

753.1 Description

Instantiates the prefab of an item on the scene

753.2 Parameters

Name Description

Item The type of item created

Location The position and rotation where the item instance is placed

753.3 Keywords

Drop Inventory Instance

Inventory » Loot » Instantiate Item

Page 1081

754 Loot Table

754.1 Description

Picks a random choice from a Loot Table and sends it to the specified Bag

754.2 Parameters

Name Description

Loot Table The Loot Table that generates the Item instance

Bag The targeted Bag component

754.3 Keywords

Bag Inventory Container Stash Give Take Borrow Lend Corpse Generate

Inventory » Loot » Loot Table

Page 1082

II.III.III.I.VI SOCKETS

Page 1083

755 Sockets

755.1 Instructions

Attach Runtime Item

Detach Runtime Item

Page 1084

756 Attach Runtime Item

756.1 Description

Attaches a Runtime Item onto the first available Runtime Item socket

756.2 Parameters

Name Description

Runtime Item The item instance

Attach The item instance attached to the other runtime item

756.3 Keywords

Bag Inventory Sockets Attach Enchant Embed Imbue

Inventory » Sockets » Attach Runtime Item

Page 1085

757 Detach Runtime Item

757.1 Description

Detaches a Runtime Item from another Runtime Item socket

757.2 Parameters

Name Description

Runtime Item The item instance with an occupied socket

Detach The item instance to detach from the other runtime item

757.3 Keywords

Bag Inventory Sockets Detach Disenchant

Inventory » Sockets » Detach Runtime Item

Page 1086

II.III.III.I.VII UI

Page 1087

758 Ui

758.1 Instructions

Close Bag Ui

Close Merchant Ui

Close Tinker Ui

Open Bag Ui

Open Merchant Ui

Open Tinker Ui

Set Bag Ui

Set Drop Amount

Set Split Amount

Set Transfer Amount

Page 1088

759 Close Bag UI

759.1 Description

Closes the current inventory UI

759.2 Keywords

Item Inventory Catalogue Content Sort Equipment Hotbar Consume

Inventory » UI » Close Bag UI

Page 1089

760 Close Merchant UI

760.1 Description

Closes the current Merchant UI

760.2 Keywords

Trade Merchant Shop Buy Sell Junk

Inventory » UI » Close Merchant UI

Page 1090

761 Close Tinker UI

761.1 Description

Closes the current Tinker UI

761.2 Keywords

Craft Make Create Dismantle Disassemble Torn Alchemy Blacksmith

Inventory » UI » Close Tinker UI

Page 1091

762 Open Bag UI

762.1 Description

Opens an inventory UI of a specific Bag

762.2 Parameters

Name Description

Bag The Bag component

Wait to Close If the Instruction waits until the UI closes

762.3 Keywords

Item Inventory Catalogue Content Sort Equipment Hotbar Consume

Inventory » UI » Open Bag UI

Page 1092

763 Open Merchant UI

763.1 Description

Opens a trading window for a specific Merchant

763.2 Parameters

Name Description

Merchant The currency type to modify

Client Bag The client's Bag component

Wait to Close If the Instruction waits until the UI closes

763.3 Keywords

Trade Merchant Shop Buy Sell Junk

Inventory » UI » Open Merchant UI

Page 1093

764 Open Tinker UI

764.1 Description

Opens an Tinkering UI for a specific Bag

764.2 Parameters

Name Description

Tinker Skin The skin that is used to display the UI

Input Bag The Bag component where items are chosen

Output Bag The Bag component where new items are placed

Wait to Close If the Instruction waits until the UI closes

764.3 Keywords

Craft Make Create Dismantle Disassemble Torn Alchemy Blacksmith

Inventory » UI » Open Tinker UI

Page 1094

765 Set Bag UI

765.1 Description

Changes the targeted Bag of a Bag UI component

765.2 Parameters

Name Description

Bag UI The Bag UI that changes its target

Bag The new Bag component

Inventory » UI » Set Bag UI

Page 1095

766 Set Drop Amount

766.1 Description

Changes whether a Bag drops a single item or the whole stack when dropping them

766.2 Parameters

Name Description

Drop Whether to drop one, or the whole stack

766.3 Keywords

Item Inventory Let Leave Take Place

Inventory » UI » Set Drop Amount

Page 1096

767 Set Split Amount

767.1 Description

Changes whether a Bag splits by unstacking a single item or the whole stack is split in half

767.2 Parameters

Name Description

Drop Whether to split one, or the whole stack in half

767.3 Keywords

Item Inventory Stack Unstack Split Divide

Inventory » UI » Set Split Amount

Page 1097

768 Set Transfer Amount

768.1 Description

Changes whether a Bag moves a single item or the whole stack when transferring them

768.2 Parameters

Name Description

Transfer Whether to transfer one, or the whole stack

768.3 Keywords

Item Inventory Transfer Move Content Place

Inventory » UI » Set Transfer Amount

Page 1098

II.III.III.I.VIII VARIABLES

Page 1099

769 Variables

769.1 Instructions

Set Item

Set Runtime Item

Page 1100

770 Set Item

770.1 Description

Saves an Item type on a Variable

770.2 Parameters

Name Description

Set The Variable that saves the Item

Item The type of item saved

770.3 Keywords

Save Keep

Inventory » Variables » Set Item

Page 1101

771 Set Runtime Item

771.1 Description

Saves a Runtime Item on a Variable

771.2 Parameters

Name Description

Set The Variable that saves the Runtime Item

Runtime Item The Item instance saved

771.3 Keywords

Save Keep

Inventory » Variables » Set Runtime Item

Page 1102

II.IV User Interface

Page 1103

772 User Interface

The Inventory module comes with a large collection of components so you have complete freedom to make your

own game UI.

To get started, it is recommended to install the UI examples that come with this module, which include a HUD, a classic

inventory, as well as a merchant and crafting/dismantle interfaces.

772.1 Skins

Skins are assets that contain a prefab with a specific UI component. There are three types of skins:

Bag Skins: These skins are linked to Bag components and require a Bag UI component at the root of the prefab.

Merchant Skins: These skins are linked to Merchant components and require a Merchant UI component at the

root of the prefab.

Tinker Skin: These skins are directly accessed when opening a Craft/Dismantle interface. They require a Tinker UI

component at the root of the prefab.

The Inventory module comes with a lot of components that make it very easy to build a user interface that

synchronizes with a Bag, Merchant or Tinkering object. Each component has a very specific use-case that is covered

in each relevant sub-section.

UI Examples

Page 1104

Some UI components depend on others that feed information to them. For example, the Coin UI component depends

on the Price UI component, that instantiates and reuses a prefab with a Coin UI component for each currency coin.

Component Dependency

Page 1105

773 Bag UI

The Bag UI is the root component for any UI prefab that displays information about a Bag. There are two types of

Bag UI components, which depend on the type of Bag used:

Bag List UI: Used for list-like Bags

Bag Grid UI: Used for grid-like Bags

This documentation focuses on Bags with a List-type, as they are most commonly used. The use of a Grid-type requires

a deeper understanding on how each UI component works, but the concepts and components used are mostly the

same.

Prefab Cell is a prefab game object with a Bag Cell UI component. This component is automatically instantiated and

updated by its parent, for each Item in the Bag displayed.

Filter by Parent is an optional Item-type filter. If none is provided, it will display all Items of all types. This is

particularly useful when creating tabs or sections.

Content is the parent game object where all prefab cells will be instantiated - One for each Item in the Bag.

Can Drop Outside determines whether an Item can be dragged outside of the UI canvas to drop it into the scene

world.

Max Drop Distance determines the maximum distance that an Item can be dropped from the Bag object.

Drop Amount determines whether a dropped object removes the whole stack of objects or just the top-most.

Note that only Items that have a Prefab object in their Item definition can be dropped.

Lists vs Grids

Dropping Items

Page 1106

773.1 Components

There are a few extra components that can synchronize a Bag's information with UI controls, which can either be

linked to a Bag, or to the Bag linked to a Bag List/Grid UI component.

773.1.1 Cell UI

This component is automatically set up and refreshed by its Bag List UI or Bag Grid UI parent component.

The Cell Info section contains an optional collection of UI control fields that can be plugged in order to be updated

when the Item(s) associated with this inventory cell change.

This component requires a Graphic component (either an Image or a Text) in order to receive input events, such as

clicks and drags.

The Merchant Info field is optional and only useful if the Bag Cell UI component is part of a Merchant UI component.

The Can Drag toggle determines whether an Item can be dragged and dropped.

Graphic component required

Page 1107

On Drop and On Select defines the behavior when this Item cell is dragged and dropped, and when it is focused.

When a Bag Cell UI is selected, any Selected Cell UI component will be refreshed with the information of the currently

selected cell. This allows to display information about a particular cell outside from the cell itself.

In both Bag Cell UI and Selected Cell UI components, one can create a prefab with a Socket UI/Property UI component

that displays the current sockets/properties.

773.1.2 Equip UI

This component is used for equipping items and assigning consumables to hotbars.

The Bag and Equipment fields determine the targeted Bag and the equipment slot that this refers to.

There are two main sections:

Base UI: Allows to display a collection of optional controls that reference the base-type Item

Equipped UI: Allows to display a collection of optional controls that reference the currently equipped Item (if there

is one).

The rest of the fields define the behavior when the Bag Equip UI is interacted with.

Selected Cell UI, Socket UI and Property UI

Page 1108

773.1.3 Wealth UI

The Bag Wealth UI component is used to display the selected Currency and how much of it the Bag carries.

This component requires a prefab that represents each coin's Currency value, and must contain the Coin UI

component.

773.1.4 Weight

This component displays the current and max weight of the selected Bag.

Page 1109

774 Merchant UI

The Merchant UI is a very simple component that acts as a middle-man between two Bag UI components - Allowing

both ends to transfer or trade their contents based on a particular set of rules.

This component has two fields at the top:

Merchant Bag UI: A Bag UI component that contains information about the Bag that represents the merchant.

Client Bag UI: A Bag UI component that contains information about the Bag that represents the client (usually, the

Player).

When a Bag UI component is referenced by a Merchant UI, the Bag UI obtains information about the trading rules,

which cascade and can be accessed from the Merchant Info section on a Bag Cell UI component.

There are also a couple of Instruction lists at the bottom that are executed when this Merchant UI executes a

transaction.

Note that Buy and Sell are from the client's perspective (aka the Player). So the On Buy instructions run when the client

purchases an item, and On Sell run when the client sells an item.

Trading

Buy and Sell

Page 1110

775 Tinker UI

Tinkering involves both Crafting and Dismantling items, and the Tinker UI component allows to display a list of UI

controls that handle the transformation.

There are two distinct sections in this component, but both work very similarly: There is a container object where all

available recipes/items are displayed, from where the user can pick one and begin the transformation process.

Filter By Parent allows to display only those Items that inherit, at some point, from the selected type. If none is

set, it will not filter any items.

Selected UI references a Crafting UI or Dismantling UI component, which is used to display the currently selected

Item from the list.

The following two fields allow to populate the list of Items:

The Content field must reference a UI game object which will be populated by an instance of a prefab for each

element in the list.

The Prefab field references a prefab game object, which will be instantiated in the container object.

The Prefab field requires a Crafting Item UI or a Dismantling Item UI component in order to work. This will be

automatically synchronized and refreshed with the information provided by the Tinker UI list.

Prefab requires component

Page 1111

775.1 Crafting Item UI

The Crafting Item UI component is both used when selecting an Item from the recipe list as well as to display each

entry from the list.

This component is automatically refreshed with the correct information about the current Item.

Page 1112

The On Start and On Complete instructions are executed when either a dismantle or crafting operation starts, and

successfully finishes. This is the perfect place to add sound and visual effects.

775.2 Dismantling Item UI

The Dismantling Item UI component is both used when selecting an Item from the available item list as well as to

display each entry from the list.

On Start & On Complete

Page 1113

This component is automatically refreshed with the correct information about the current Item.

Recover Chance is a value between 0 and 1 that determines the chance to recover each and every one of the

ingredients that constitute the dismantled Item.

Page 1114

II.V Releases

Page 1115

776 Releases

776.1 2.8.19

New

Property: Set Items in Bag using Number property

UI: Destroy Item method in Cell UI

Enhances

Editor: Support for Unity 6

776.2 2.8.18

Fixes

UI: Empty cell created after picking up Item

Merchant: Empty values first time opening Merchant

Event: On Socket Attach null reference in Bag

Event: On Socket Detach null reference in Bag

776.3 2.8.17

(Latest)

Released October 18, 2024

Released August 3, 2024

Page 1116

New

Property: Get Item price

Enhances

Trigger: On Socket Attach options for Item and Attachment

Trigger: On Socket Detach options for Item and Attachment

Fixes

UI: Hide Equipment displayes incorrect items

UI: Merchant UI being called twice when opening

776.4 2.8.16

New

Property: Empty Item, Runtime Item and Loot Table

Enhances

Examples: Cleaner and simpler demo scenes

Fixes

Saving: Grid Bags keep order when loading

UI: Sprites displayed partially in Equip UI

UI: Merchant refreshes interface after trading

UI: Allow Send Equipment applies to the whole stack

Equipment: Missing options overriding slots

Instruction: Drop Amount shows incorrect title

776.5 2.8.15

Released July 30, 2024

Released February 23, 2024

Page 1117

New

Demo: New alchemy example with recipe learning

Enhances

Crafting: Items not Craftable are not listed

Fixes

Bag: Partially shown Items in Equipment

Bag: Error if bag and skin types do not match

776.6 2.8.14

This version breaks compatibility with previous versions and will only work with Game Creator 2.13.43 or higher.

New

Grid: New Grid Inventory system

Condition: Has Enough Available Space

Equipment: Optional use of Handles

Property: Last Item Created

UI: Option to hide equipped Items

Examples: Three new grid inventory demos

Changes

Items: Instructions with optimized workflows

Internal: Support for Core 2.13.42 version

Fixes

UI: Tooltips showing after destroying UI cell

776.7 2.7.13

Released November 12, 2023

Released October 31, 2023

Page 1118

New

Item: Instructions On Create Item under Info

Item: Hide number/text from item Properties

Loot Table: Variable type Loot Table

Property: Loot Table instance

Property: Loot Table from Variables

Settings: Refresh button on Inventory window

Enhances

UX: Auto detect when new Items are created

UX: Items display parent hierarchy in Inspector

Changes

Instruction: Loot Table uses a Property

Fixes

Item: Refresh ID if no Items available

Property: Mixed Last Item Sold / Bought

Remember: Equipment error if no equipment

776.8 2.6.12

New

Condition: Enough Ingredients to Craft

Event: On Change Currency

Fixes

Trigger: On Drop Item has Bag object as Target

Trigger: On Drop Item not working with previous API

Property: Get Random Item returns a valid value

Property: Get Random Runtime Item returns a valid value

Variables: Incorrect initialization phase

Examples: Support for core version 2.11.41

Released September 1, 2023

Released June 13, 2023

Page 1119

776.9 2.6.11

New

Items: Can now have Cooldowns after using them

Instruction: Add Item/Runtime Item Cooldown

Instruction: Remove Item/Runtime Item Cooldown

Instruction: Clear Cooldowns

Condition: Is Item/Runtime Item in Cooldown

Property: Random Item and Runtime Item from Bag

UI: Option to disable exchanging equipped items

UI: Option to split stack by one or in half

Enhances

Remember: Memorizes time left of Item cooldowns

Fixes

Instruction: Set Drop Amount incorrect settings

Items: Can Run conditions not running properly

UI: Bag UI component missing field throws error

Align: Equipment index alignement regression

Align: Coin index alignement regression

776.10 2.6.10

Released May 9, 2023

Page 1120

New

Instruction: Set Transfer Amount

Instruction: Set Drop Amount

Condition: Is Tab UI Active

Property: Last Item attempted to Use

Property: Last Item attempted to Equip/Unequip

Property: Last Item attempted to Craft/Dismantle

UI: Allow to split stack of Items

Settings: Displays current and update version

Enhances

UI: Tab support selection/gamepads

Examples: Shortcuts to cycle through UI tabs

Fixes

Equipment: Wrong Skinned Meshes bones

Triggers: Bags not detecting the Player

UI: Incorrect buy/sell conditions

776.11 2.6.9

Enhances

Performance when using On Drop Item

Exposed Bag UI members for modification

Fixes

Support for new Props system

Null reference when retrieving Item properties

776.12 2.6.8

Released March 24, 2023

Released December 8, 2022

Page 1121

New

Property: Get Item Sprite

Property: Get Item Color

Property: Get Runtime Item Sprite

Property: Get Runtime Item Color

Changes

Copy Runners use less memory footprint

Fixes

Remember: Ignore if no Bag is present

776.13 2.5.7

New

Instruction: Close Bag UI

Instruction: Close Merchant UI

Instruction: Close Tinker UI

Example: Save and Load inventory

Enhances

Drag & drop swaps Items instead of shifting

Merchant UI Cell: Field to check if cell is valid

Fixes

Save/Load: Preserves order of Items

Grouping Items when stacking deletes source Item

Failing to Load Equipment of previously saved game

Instruction: Can Increase Width incorrect check

Instruction: Can Increase Height incorrect check

776.14 2.4.6

Released November 8, 2022

Released September 19, 2022

Page 1122

New

Instruction: Increment Bag Height

Instruction: Increment Bag Width

Condition: Is Equipment Slot Available

Dropping Items use a LayerMask

UI Items can be rearranged by default

Enhances

Loot Table redesign top plot

Changes

Rearranged Equipment Index class

Fixes

Detect new Items before enter Play Mode

776.15 2.3.5

Released August 21, 2022

Page 1123

New

Option to uninstall modules

Condition: Item has Property

Condition: Runtime Item has Property

Condition: Is Runtime Item Equipped

Property: Get Item/Runtime Item Sprite

Property: Get Item Sprite

Property: Get Runtime Item counterparts

Property: Set Runtime Item counterparts

Property: Get Current Open Bag

Property: Get Current Merchant Bag

Property: Get Current Client Bag

Property: Get Current Tinker Bag

Example: Storage Chest

Enhances

Reorganized Item dropdown

Reorganized Runtime Item dropdown

Fixes

Log error when exception in Item instructions

Wrong Item tinkered when changing UI window

Condition: Is Item Equipped with sub items

Serialization error during domain reloads

776.16 2.3.4

Released June 29, 2022

Page 1124

New

New Runtime Item properties

New Runtime Item Variable type

Instruction: Add/Remove Runtime Item

Instruction: Drop Runtime Item

Instruction: Equip/Unequip Runtime Item

Instruction: Attach/Detach to Socket

Condition: Has Runtime Item

Checkbox determines if Item can be sold

Checkbox determines if Item can be bought

Checkbox determines if Item can be dropped

Enhances

Reorganized Inventory instructions

Fixes

Edge case when saving Equipment and Wealth

Retrieving a Bag from a Property

Loot Table displays NaN with no drops

Bag wealth updated at runtime upon change

Selected item would show wrong one

776.17 2.2.3

Released May 17, 2022

Page 1125

New

Instruction: Drop Item

Condition: Compare Wealth

Property: Bag Set Wealth

Property: Item Get Property Text

Property: Item Get Property Value

Property: Item Get Property Color

Property: Item Get Property Sprite

Property: Item Set Property Text

Property: Item Set Property Value

Enhances

Editor: Properties have scene refs

Changes

Hide properties from within Item

Support Socketing from external sources

Fixes

Fields alignment in Inspector

Missing Price UI editor drawer

Incorrect dropped item in Example scenes

776.18 2.1.2

Released March 25, 2022

Page 1126

New

Items have usage conditions

Equip/Unequip can inherit logic from its parents

Using Items can inherit logic from its parents

Condition: Can Equip to Bag

Condition: Is Equippable

Condition: Is Equipped

Condition: Is Craftable

Condition: Is Dismantable

Condition: Is Usable

Instruction: Change target Bag of Bag UI

UI: Bag UI can have a default Bag

UI: Properties with a value of 0 can be skipped

Properties: Access to recent socketed Items

Changes

Item price increments with socketed Items

Compatibility with Game Creator 2.3.15

776.19 2.0.1

New

First release

Released January 28, 2022

Released January 12, 2022

Page 1127

III. Dialogue

Page 1128

777 Dialogue

Most games allow verbal communication between the player and other characters - Whether that's using barks,

cinematic sequences or dialogues where the player is prompted to choose between different choices.

The Dialogue module caters all these using simple and intuitive tools that help keep dialogues at a glance while

allowing to fully tailor it to the user's needs.

Get Dialogue

The Dialogue module is an extension of Game Creator 2 and won't work without it

Requirements

https://gamecreator.link/dialogue
https://gamecreator.link/core

Page 1129

778 Setup

Welcome to getting started with the Dialogue module. In this section you'll learn how to install this module and get

started with the examples which it comes with.

778.1 Prepare your Project

Before installing the Dialogue module, you'll need to either create a new Unity project or open an existing one.

It is important to note that Game Creator should be present before attempting to install any module.

778.2 Install the Dialogue module

If you haven't purchased the Dialogue module, head to the Asset Store product page and follow the steps to get a

copy of this module.

Once you have purchased it, click on Window → Package Manager to reveal a window with all your available assets.

Type in the little search field the name of this package and it will prompt you to download and install the latest stable

version. Follow the steps and wait till Unity finishes compiling your project.

778.3 Examples

We highly recommend checking the examples that come with the Dialogue module. To install them, click on the

Game Creator dropdown from the top toolbar and then the Install option.

The Installer window will appear and you'll be able to manage all examples and template assets you have in your

project.

Examples: A collection of scenes with different use-case scenarios

Skin Default: A minimalist template UI skin for your dialogues

Skin Message: A UI skin that shows conversations like SMS/Text messages

Skin Pixel: A fantasy UI skin that displays floating conversations

Skin Cyberpunk: A futuristic UI skin with glitches and HUD portraits

Game Creator

Page 1130

The Examples requires all the skins in order to work..

Clicking on the Examples install button will install all dependencies automatically.

Once you have the examples installed, click on the Select button or navigate to

Plugins/GameCreator/Installs/Dialogue.Examples/ .

Dependencies

Page 1131

Page 1132

III.I Dialogues

Page 1133

779 Dialogues

All conversations are written in a Dialogue component. To create one, right click on the Hierarchy Panel and select

Dialogue → Dialogue.

Alternatively, you can select any existing game object and click on the Add Component button and search for Dialogue.

This is the basic view of the Dialogue component, and it's where all the text is written and configured. However, there

are multiple sidebars and windows that can be hidden/shown in order to make it easier to work.

780 Anatomy of a Dialogue

The Dialogue component, fully expanded, has 4 different sections, two of which can be collapsed to increase the

amount of space available when these are not needed.

Add Component

Page 1134

780.1 Top Toolbar

The top toolbar has two distinct sections.

The buttons on the left allow to add new nodes to the conversation. These nodes can either be:

A Text element, which is the most common type. It displays a text on screen.

A Choice element, which allows to present a choice to the player

A Random selection element, which is similar to the Choice element, but automatically selects a random value.

Holding the 'Shift' key while clicking on any of the buttons will perform the opposite operation stated next to the

buttons.

For example, clicking on a Text node that is set as a Sibling, while holding the Shift key, it will create a new node as a

Child of the current one.

To learn more about the different nodes, head to the Nodes section

Shortcuts

Page 1135

This section also allows to select where to create the new element. By default, it will always create it right below the

currently selected entry, as a sibling. However, this can be changed to create a new element as a child of the

selection.

On the far right there are two toggle buttons.

The first one with the gear icon, toggles the left sidebar, which is the Settings window.

The second one with the square, toggles the right sidebar, which is the Inspector window.

780.2 Settings

The Settings window allow to configure the general values of the current conversation. There are 3 sections:

Configuration: Determines the skin used by the Dialogue when displaying the conversation, as well as whether it

is affected by the time scale or not.

Actors: This section is automatically filled when new Actors are added or removed, and allows to link a scene

reference with the Actor.

Editor: This allows to customize how the Editor looks like, in order to have more real estate and work more

comfortable. These options have no impact on gameplay.

780.3 Conversations

Page 1136

This section is the most important one, which allows to overview the whole conversation flow at a glance. Each row

is a spoken dialogue line, and they are executed from top to bottom, and examining the child nodes first, before

jumping to the next sibling.

Because opening and closing the Inspector sidebar is a very common operation, double clicking on any node will open

(and focus on the current node) or hide the sidebar.

780.4 Inspector

The inspector sidebar allows to set and modify the currently selected node of a Dialogue.

Starting from the top, any node allows to change its type, which can either be a Text, Choice or Random.

For more information about node types, see the Nodes section.

The Conditions list below determines whether this node can be executed or not.

Double Click

Node Types

Page 1137

The Portrait field allows to choose where the Actor's portrait is displayed (if any at all). It allows three options:

None: No portrait is displayed. This is the default option.

Primary: The primary position of all portraits.

Alternate: An alternate position where to show the portrait, if the skin supports it.

The Actor field allows to reference an Actor asset. If one is provided, it also allows to choose which expression to

use for this dialogue line (if any are available).

Note that whenever an Actor field is modified, the Dialogue component re-scans the whole conversation tree and

gathers which Actors are being used, which can be configured in the Settings sidebar.

The Text field is probably the most important one, and it defines the text displayed by the dialogue.

There's a button below that reads Add Value..., which allows to create a list of key-value pairs. These values can be

used by the text to add dynamic values. For example, displaying the real name of the Player saved in a global

variable.

Dynamic values are incredibly powerful. Read more on how to use them at the Dynamic Values section.

The Audio field, as it name implies, allows to use a voice clip while the text is being displayed.

The Animation field allows to choose an animation field, which is played on the object linked to the current Actor. If

none is provided or the scene reference is empty, the animation is ignored.

Actors

More about Dynamic Values

Page 1138

The Animation field is more powerful than regular Gestures, as it allows to play instructions at any point of the

animation.

For more information about the animation timeline tool, see the Animation Timeline section.

The On Start and On End instructions are executed when the text starts to display and disappears, respectively.

The Duration field determines how long the text will stay on screen. By default, it waits until the user presses any

button to jump to the next line. However, this can be changed with one of the following options:

Until Interaction: The default value. Waits until the element is ordered to skip to the next line.

Timeout: Waits until the specified time has passed.

Audio: Waits until the specified Audio Clip finishes playing.

Animation: Waits until the Animation Clip finishes playing.

It's important to note that if Audio or Animation are selected, but no asset for those values are present, the duration will

be zero seconds and will skip immediately to the next text line.

The Jump field, by default, indicates the next dialogue line to play is the natural one (child if any, otherwise the next

bottom sibling). However, this field can also be changed to jump to any arbitrary point marked with a specific Tag, or

even exit the Dialogue after the current line is executed.

Animation Timeline

No Audio or Animation

Page 1139

781 Nodes

A Dialogue is composed of nodes displayed from top to bottom, and can even be set as children of other nodes.

Nodes can be dragged and dropped to change their position in the conversation tree. Dragging and dropping onto

another node, will convert the dragged one into a child of the targeted.

There are three different node types: Text, Choices and Random nodes.

781.1 Text

Text nodes are the most common and used to display conversations. They display a text message on screen and

simply jump to the next node when they are finished.

Page 1140

It's important to note that a Text node can contain children nodes. These will be executed if, and only if, the parent Text

node's conditions are satisfied. This is specially useful if you want to display a conversation only after meeting certain

conditions.

Any text can be enhanced with rich text tags, which allow to change the color, size and other properties of specific

regions. For example, to display the word James in white in the phrase Hello James , you can surround the specified

word between <color> tag:

Read the official Unity documentation on Rich Text

781.2 Choices

Choice nodes prompt the user with a collection of choices. How these choices are presented and their behavior is

configured below with a new set of fields that appear.

Since version 2.2.8 Choice options are configured in the Dialogue Skin by default. However, you can change the

dropdown option from From Skin to From Node and a list of options that override those from the Skin will appear.

The available choices are picked from the direct children of the Choices node, which should usually be Text nodes.

Using child nodes of Text

Hello <color=#FFFFFF>James</color>

More about Rich Text

Options from Skin

https://docs.unity3d.com/Packages/com.unity.ugui@1.0/manual/StyledText.html

Page 1141

Hide Unavailable: Determines whether unavailable choices (their Conditions return false) should be displayed (but

greyed out) or hide them completely.

Hide Visited: Determines whether the choice is skipped if the line has already been visited.

Skip Choice: Allows to skip the execution of the Text choice selected, and skip to the next immediate one.

Shuffle Choices: When ticked, the choices order will be shuffled and displayed randomly.

Timed Choice: Determines if the choice has a time limit. If checked, two new fields wil appear down below.

Duration: Specifies the amount of time the user has to pick a choice, in seconds.

Timeout: Defines what happens if the user fails to input a choice, which can either be picking one at random,

the first option or the last one (both prior to shuffling, if enabled)

Choosing Skip Choice allows the player to not speak the dialogue line when picking it from the prompt. For example,

let's say a bartender asks the player whether they want a drink. The Player could see the option "Yes, a Moonlight

Specter". If left unchecked, the Player would then execute the Text node. Some games, however, don't repeat the choice

made by the user and assume the player already said it when the user picked the choice.

If the Choices does only have a single choice available, it will be automatically selected without requiring the user to

choose it.

781.3 Random

Random picks are similar to Choices, except for the fact that the user is not prompted to pick them, and instead, they

are randomly picked.

Skipping Choices

Single Choice

Page 1142

Since version 2.2.8 Random options are configured in the Dialogue Skin by default. However, you can change the

dropdown option from From Skin to From Node and a list of options that override those from the Skin will appear.

The Random node also has the field Allow Repeat which determines whether the same choice can be picked in a

row, or not.

Random choices are useful to allow characters to pick a random line from a collection. For example, a shop keeper

could greet the player differently every time they talk.

Options from Skin

Greeting

Page 1143

782 Dynamic Values

There are times where a dialogue text must contain some sort of variable value. For example, displaying the player's

name that has previously been prompted.

Dynamic Values allow to replace special symbols on the text with values that come from more dynamic sources,

such as Local Variables, Stats, etc...

There are two types of dynamic values: Local and Global ones.

782.1 Local Dynamic Values

Local dynamic values are set up inside the Dialogue component, right under the Text field of a node.

Each value is assigned an index value, starting from 0 at the top. Using the index number between curly braces {

and } .

In the screenshot above, the text {0} will be replaced by the Global Variable value called name .

A Local dynamic value can also have a specific color assigned to it, appear in bold and/or in italic characters.

Player Name

Page 1144

782.2 Global Dynamic Values

Global dynamic values are very similar to the local ones, but their scope is project-wide, so they only need to be set

up once. In the previous example, in order to display the player's name, we'd need to configure a Local dynamic value

for each dialogue line that displays the player's name.

Instead, it's much more efficient to define a global value that any Dialogue can make use of.

To edit or create Global dynamic values, click on the top toolbar's Game Creator button and navigate to Settings.

Click on the Dialogue tab and a list of all created values will appear, with a button to add new ones.

Global dynamic values have an extra field called Key, which is the unique ID assigned to that particular value.

In order to use a Global dynamic value, one must type the Key value between brackets. For example, if the key value

is "player-name", the symbol that replaces itself with the Global dynamic value is {player-name} .

Global dynamic values also allow to specify whether the replaced text should be printed in Bold, Italic and/or in a

specific color.

Page 1145

783 Animation Timeline

The Animation field available in every Dialogue node is a fully-featured Timeline-like sequencing tool that allows to

play, preview and add events at different timestamps of an animation.

Dragging and dropping an Animation Clip onto the Animation field reveals a sequencing tool below.

The first section is called Configuration and contains all the setup options any other Gesture has.

The second one is the Sequencing tool, where the animation clip can be previewed in the scene view if the Actor

referenced is present in the Editor scene. To disable scrubbing the preview, click on the squared blue button.

The timeline has rhomboid-like shapes called Markers, which execute instructions when the animation clip plays

that specific point.

Markers can be dragged and slide around the timeline. Doing so will automatically enter animation preview mode, so it's

easier to adjust the exact point where the instructions should be called.

The sequence has two buttons with a - and a + at each end.

Clicking on the plus icon will place a new Marker on the timeline where the head is.

The minus button removes the currently selected Marker and any instructions associated with them.

It is very important to note that if the Dialogue line stops executing before the animation clips has finished, the

Animation sequence will be canceled at that point and the rest of Markers won't be executed.

If there are some critical events that need to be executed before skipping to the next line, these should be placed inside

the On Start or On End instruction lists of the Node.

Moving Markers

Executing Instructions

Page 1146

784 Tags

Each Dialogue line can be marked with a Tag, which is a unique name that identifies that line from the rest.

This identification can then be used for:

Jumping to a specific line after a node has been executed (useful for looping conversations).

Using a Condition to check if a node has been executed or not.

To add a Tag to a node, right click it and select Tag.... A pop up window will appear with a text prompt. After giving it

a name, click Save and it will display on the right side of the node.

Note that Tags should have unique names across the Dialogue component and their name can't contain any spaces or

non-alphanumeric characters.

Here's an example of a Condition checking if the my-tag Tag has been executed or not.

Unique Tags

Page 1147

III.II Actors

Page 1148

785 Actors

Actors are assets that represent a character speaking in a Dialogue and allow to configure their name, how they

speak, appear and writing effects.

785.1 Actors Name

The first two fields allow to give the Actor a Name and a Description.

Both fields are optional, but can be used in the Dialogue component to automatically display the name of the

speaker when a character linked to this actor says something.

785.2 Expressions

The Expressions list is a collection of states in which a character can be when speaking a line. You can use these to

express anger, surprise, confusion or any other mental state when a line is spoken, with their respective animation,

sound and visual queues.

For more information about Expressions, see the Expressions section.

785.3 Effects

More about Expressions

Page 1149

The Typewrite section allows Dialogue lines to appear word by word at a certain pace. This is very useful when

different characters have different voice cadence and you want to reflect that without using voice-over.

The Frequency field determines how many characters per second appear.

Gibberish is an audio effect played during non-voice acted characters that provide a cheap and easy way to imbue

mood into each spoken line. Commonly used in older RPG games, each character plays a random collection of

sounds with varying pitch and speed.

The Dialogue module comes with a built-in gibberish sound effect ready to be used and customized. Simply select it

from the Audio Clip drop down and change the Pitch value to fit your needs.

785.4 Custom Skin

Most of the time, all characters will use the same speech bubble displayed in the user interface. However, some

games require some characters to have a custom speech bubble, like a robot character using a different typography

and speech bubble aesthetic.

The Optional Skin field allows a character to override its speech bubble whenever this Actor is used.

For more information about how Skins work, see the Skins section.

The field Default Portrait allows to define a default position for this Actor's portrait. This is used by the Dialogue's

component, when a node portrait is set to Actor Default.

Default Gibberish

About Skins

Page 1150

786 Expressions

Expressions allow to deliver dialogue lines in a specific mood. For example, changing the Sprite character that

represents the speaker with the associated emotion, show an onomatopoeia, sound effect and/or an animation.

To create a new Expression, click on the Add Expression button.

It's important to note that the top most Expression is considered the default expression, and thus it should be the most

commonly used one.

The ID field determines the unique name that identifies this Expression among the rest.

The Sprite is a texture that is used as a portrait when the speaker uses this emotion.

The Speech Skin is an optional field that allows to override the speech UI skin used when the Actor uses this

particular expression. If none is provided, the Actor skin is used. And if the Actor doesn't have any either, the default

one is used.

To know more about what a Speech Skin is and how to use it, visit the UI section.

The On Start and On End instructions are executed at the very beginning and end of the Expression. This can be

used to play a Gesture or even enter/exit a State when using a specific expression.

Default Expression

Learn more about Speech Skins

Page 1151

When a new Expression is used, the On Start instructions will be executed. However, the On End instructions won't be

called until a new Expression is used, or the Dialogue is finished.

For example, let's say the Player delivers a new dialogue line with the Angry expression. If the next line also uses the

Angry expression, the On End instructions won't be called until the Player delivers a new line with a different expression,

or the dialogue finishes.

When instructions are executed

Page 1152

III.III Skins

Page 1153

787 Skins

Skins are assets that allow a Dialogue to quickly change its looks by swapping them, as well as configure various

aspects, such as sound effects and animations.

The Dialogue module has primarily two types of Skins:

Dialogue Skins: Also known as Theme skins, are the most general ones.

Speech Skins: They require to be part of a Dialogue Skin and can override the speech bubble of a speaker.

The Dialogue module comes with a collection of skins that you can use in your games. To install them, click on the

toolbar and select Game Creator → Install...

You'll see a list of Skins to install with a short description next to them. Select the one you want to use (or all of them)

and click on the Install button.

787.1 Dialogue Skins

Dialogue skins change the look and feel of a conversation, and contains all the necessary information to display

speech bubbles (through the use of Speech Skins), history logs, present choices to the user and show or hide

speaker's portraits.

To change a Dialogue's skin, select it and open the Settings sidebar

Built-in Skins

Page 1154

You can drag and drop any available Dialogue Skins onto this field and it will automatically use it for this particular

conversation component.

A Dialogue Skin contains a prefab field, which is the UI schematic with the different components that conform the

interface.

To learn more about creating a custom skin, see the User Interface section.

Creating a custom Dialogue Skin

Page 1155

The Animations section allows to define which UI animations are played when a Dialogue component starts, loops

and when it ends. These fields are optional and if none a provided, no animation will be played.

The Sound Effects section allows to define which sounds are played at different times.

Start: Played when a dialogue starts.

Finish: Played when a dialogue finishes and closes.

Select: Played when the user hovers or selects any choice.

Submit: Played when the user submits a choice.

Since version 2.2.8 the Dialogue options are configured globally in each skin.

Default node configuration options

Page 1156

At the end of the Dialogue Skin asset there's another section called Nodes where the default options for Text, Choice

and Random nodes are configured. Unless a node overrides the values, these will be used.

787.2 Speech Skins

A Speech Skin is used by the Dialogue Skin to display a speech bubble by the current speaker.

A Dialogue Skin requires to have a default Speech Skin. However, this can be overridden by any speaker, assigning a

new Speech Skin onto its Actor asset.

A Speech Skin contains a Prefab object field which defines the UI schema.

To learn more about creating a custom skin, see the User Interface section.

The Animations section allows to optionally define which animation clips will be played when a new dialogue line is

spoken and a looped animation, if any is needed.

It also allows to configure whether the animation should be played only if a new speaker is delivering the line, or

should the animation be played for every new line, even if the same character is delivering two or more of them in a

row.

The Sound Effects section allows to play a sound effect when a dialogue line starts to be delivered, and when it

finishes.

Creating a custom Speech Skin

Page 1157

The Override Log field is an optional one that allows to customize the log entry (if any available). This is specially

useful if you want, for example, the Player to have a different log design than the rest of the characters.

Page 1158

III.IV User Interface

Page 1159

788 User Interface

Creating custom interfaces for a Dialogue is fairly straight forward, although we recommend duplicating an existing

one and modifying it in order to make the process easier.

Customizing the UI requires certain degree of expertise with Unity and its UI system.

788.1 Custom Dialogue Skin

A custom Dialogue Skin interface must have, at the top level game object, a Canvas component and a Dialogue UI

component.

The Dialogue UI component is te entry point of a conversation and delegates to its the rest of the child dialogue UI

components what to do and when to do it.

Advanced Section

Page 1160

The Dialogue UI component has two fields:

Speech: A Rect Transform reference where the Speech Skin is instantiated.

Default: The default Speech Skin to use, if the current Actor speaker doesn't override it.

This is the bare minimum required to create a custom Dialogue Skin.

There rest of the components mention below are all completely optional.

The Dialogue Unit Timer UI is a component that allows to display a countdown when a choice is presented to the

user and has to make a selection before the time runs out.

The Dialogue Unit Choices UI is a component that allows to configure where the choices of an interface go and look

like.

Since version 2.1.7 the Dialogue Choice UI component contains a field called Index which references a Text or Text

Mesh Pro Text component, which indicates the index of the choice, starting from 1.

You can use the Choice Index Instruction to attempt to choose an choice by its index. If a choice is available with that

idex, it will automatically be chosen.

We recommend using a layout component, such as Horizontal Layout Group or a Vertical Layout Group in order to

automatically align and distribute the choices.

The Dialogue Unit Logs UI is a component that collects and stores past lines delivered and choices, so the user can

review them.

The Dialogue Unit Portraits UI is a component that displays Sprite of the current speaker, if any at all.

788.2 Custom Speech Skin

A Speech Skin UI prefab must contain, at the root of the game object, the Speech UI component.

Optional Components

Choice by Index

Using Layout components

Page 1161

The Active field references a game object from itself that is set as active/inactive, depending on whether a dialogue

text is being delivered.

Similarly, the Actor Active field is a optional game object reference that is set as active/inactive, depending on

whether the currently delivered line contains an Actor reference or not.

Actor Name and Actor Description, as their name implies, reference a Text component which changes into the

current Actor's name and description (if any).

The Active Portrait field is another optional one that sets the game object as active or inactive, depending on

whether there Actor asset and chosen Expression contains a Sprite to be used. If it does, the Portrait Image field is

used to fill it with the texture value.

The Text field is the most important one, and it references a Text component that changes with the text of the

current line being delivered.

The Skip game object is an optional game object reference that is used to mark the end of a sentence. It indicates

that the user can press any key to jump to the next dialogue line, and it usually has the shape of a small arrow

pointing right or downwards.

Page 1162

III.V Visual Scripting

Page 1163

789 Visual Scripting

The Dialogue module symbiotically works with Game Creator and the rest of its modules using its visual scripting

tools.

Instructions

Conditions

Events

Each scripting node allows other modules to use any Dialogue feature.

Page 1164

III.V.I Conditions

Page 1165

790 Conditions

790.1 Sub Categories

Dialogue

Page 1166

III.V.I.I Dialogue

Page 1167

791 Dialogue

791.1 Conditions

Dialogue Played

Tag Visited

Page 1168

792 Dialogue Played

792.1 Description

Returns true if the Dialogue component has been played

792.2 Parameters

Name Description

Dialogue The Dialogue component

792.3 Keywords

Dialogue Text Line Choice

Dialogue » Dialogue Played

Page 1169

793 Tag Visited

793.1 Description

Returns true if the Tag of a particular Dialogue has ran

793.2 Parameters

Name Description

Dialogue The Dialogue component

Tag The Tag name to check

793.3 Keywords

Dialogue Text Line Choice

Dialogue » Tag Visited

Page 1170

III.V.II Events

Page 1171

794 Events

794.1 Sub Categories

Dialogue

Page 1172

III.V.II.I Dialogue

Page 1173

795 Dialogue

795.1 Events

On Finish Dialogue Line

On Finish Dialogue

On Start Dialogue Line

On Start Dialogue

Page 1174

796 On Finish Dialogue Line

796.1 Description

Executed when any or a specific Dialogue finishes playing the current line

796.2 Keywords

Node Conversation Speech Text Play New Next Continue Skip

Dialogue » On Finish Dialogue Line

Page 1175

797 On Finish Dialogue

797.1 Description

Executed when a specific Dialogue component finishes playing

797.2 Keywords

Node Conversation Speech Text End Complete

Dialogue » On Finish Dialogue

Page 1176

798 On Start Dialogue Line

798.1 Description

Executed when any or a specific Dialogue starts playing a new line

798.2 Keywords

Node Conversation Speech Text Play New Next

Dialogue » On Start Dialogue Line

Page 1177

799 On Start Dialogue

799.1 Description

Executed when a specific Dialogue component starts to play

799.2 Keywords

Node Conversation Speech Text Begin Play

Dialogue » On Start Dialogue

Page 1178

III.V.III Instructions

Page 1179

800 Instructions

800.1 Sub Categories

Dialogue

Page 1180

III.V.III.I Dialogue

Page 1181

801 Dialogue

801.1 Sub Categories

Ui

801.2 Instructions

Play Dialogue

Stop Dialogue

Page 1182

802 Play Dialogue

802.1 Description

Plays a dialogue

802.2 Parameters

Name Description

Dialogue The Dialogue component to play

Wait to Finish Whether to wait until the Dialogue is finished or not

802.3 Keywords

Dialogue Narration Speech Next Skip

Dialogue » Play Dialogue

Page 1183

803 Stop Dialogue

803.1 Description

Stop playing a dialogue

803.2 Parameters

Name Description

Dialogue The Dialogue component to stop playing

803.3 Keywords

Dialogue Narration Speech Next Skip

Dialogue » Stop Dialogue

Page 1184

III.V.III.I.I UI

Page 1185

804 Ui

804.1 Instructions

Choice Index

Skip Line

Page 1186

805 Choice Index

805.1 Description

Attempts to choose a Choice node by its index (starting at 1), if it exists

805.2 Parameters

Name Description

Index The numeric index of the Choice, starting from 1

805.3 Keywords

Dialogue Narration Speech Choose Pick

Dialogue » UI » Choice Index

Page 1187

806 Skip Line

806.1 Description

Finishes a dialogue UI line or skips to the next one

806.2 Parameters

Name Description

Speech UI The Speech UI component associated

806.3 Keywords

Dialogue Narration Speech Next Skip

Dialogue » UI » Skip Line

Page 1188

III.VI Releases

Page 1189

807 Releases

807.1 2.5.15

Changes

Editor: Support for Unity 6

Removes

Editor: Obsolete UI Toolkit APIs

807.2 2.5.14

New

Trigger: On Dialogue Start Line

Trigger: On Dialogue Finish Line

Changes

Internal: Support for Core 2.15.49 version

807.3 2.4.13

(Latest)

Released October 18, 2024

Released February 23, 2024

Page 1190

This version breaks compatibility with previous versions and will only work with Game Creator 2.13.43 or higher.

New

Expression: Sprites are dynamic Properties

Changes

Internal: Support for Core 2.13.42 version

Fixes

Examples: Compatible with the latest core version

Expression: Not binding values when adding new ones

Expressions: Incorrect clamping index value

807.4 2.3.12

Fixes

Examples: Compatible with the latest core version

807.5 2.3.11

New

Skin: Customize behavior when there's one choice

Fixes

Choices: Skipping conditions when using keyboard

Examples: Compatible with the latest core version

807.6 2.3.10

Released October 31, 2023

Released September 3, 2023

Released June 27, 2023

Page 1191

Fixes

Roles: Generic name displayed in Dialogue roles section

Portratis: Names and Descriptions cleared before playing

807.7 2.3.9

New

Settings: Displays current and update version

Enhances

QoL: Align labels with Unity 2022.2 standard

Fixes

Edge case in which Dialogue would not save changes

807.8 2.2.8

New

Skins: Contains node information set by default

Fixes

Nodes: Skip visited not working correctly

Nodes: Error upon stopping a Dialogue while in Choice

807.9 2.1.7

Released June 12, 2023

Released March 24, 2023

Released January 31, 2023

Page 1192

New

Instruction: Choose choice by Index

Visited choices can be skipped

Enhances

Copy-Runner with less memory footprint

Skins: New indexed choices

Examples: With indexed choices

Changes

Compatibility with Game Creator 2.7.28

Fixes

Choice nodes disable Instructions if skipped

807.10 2.0.6

Enhances

Editor: Dialogue remembers last selection

Fixes

Portraits exception when set to default

807.11 2.0.5

Released November 8, 2022

Released September 22, 2022

Page 1193

New

Default Portrait set in Actor asset

Enhances

Hold Shift to create Child/Sibling node

Rearranged UI components in Unity menus

Fixes

Gibberish audio playing after skipping line

Conflicting metadata GUIDs with Inventory

Inspector sidebar remembers its position

807.12 2.0.4

Fixes

Sequencing tool not executing markers

Using non-existing Tag throws error

807.13 2.0.3

Released August 22, 2022

Released July 6, 2022

Page 1194

New

Option to uninstall Dialogue

Icon for Dialogue Skin

Enhances

Default skin uses darker background

Behavior of the Skip/Continue button

Improved Cyberpunk Dialogue Skin

Fixes

Serialization error during domain reloads

Null Actor reference in Log UI

Typo in Example scenes

807.14 2.0.2

Fixes

Marketing images fit better

Conflicting meta files with other modules

807.15 2.0.1

New

First release

Released June 24, 2022

Released June 8, 2022

Released June 8, 2022

Page 1195

IV. Stats

Page 1196

808 Stats

Nearly all games one can play has some kind of Stat system; Whether it is a simple health bar with a fixed amount of

hit points or a complex RPG with dozens of stats that influence the progress of the player and the outcome of any

interaction.

The Stats module has been envisioned to help game designers more naturally and easily architect their games.

Get Stats

The Stats module is an extension of Game Creator 2 and won't work without it

Requirements

https://gamecreator.link/stats
https://gamecreator.link/core

Page 1197

809 Setup

Welcome to getting started with the Stats module. In this section you'll learn how to install this module and get

started with the examples which it comes with.

809.1 Prepare your Project

Before installing the Stats module, you'll need to either create a new Unity project or open an existing one.

It is important to note that Game Creator should be present before attempting to install any module.

809.2 Install the Stats module

If you haven't purchased the Stats module, head to the Asset Store product page and follow the steps to get a copy

of this module.

Once you have purchased it, click on Window → Package Manager to reveal a window with all your available assets.

Type in the little search field the name of this package and it will prompt you to download and install the latest stable

version. Follow the steps and wait till Unity finishes compiling your project.

809.3 Examples

We highly recommend checking the examples that come with the Stats module. To install them, click on the Game

Creator dropdown from the top toolbar and then the Install option.

The Installer window will appear and you'll be able to manage all examples and template assets you have in your

project.

Examples: A collection of scenes with different use-case scenarios

Classes: A template with Stats, Attributes and Classes to kickstart your game

UI: Samples for creating a HUD and a Character Stats menu

Game Creator

Page 1198

The Examples requires both the Classes and UI extensions in order to work.

Clicking on the Examples install button will install all dependencies automatically.

Once you have the examples installed, click on the Select button or navigate to

Plugins/GameCreator/Installs/Stats.Examples/ .

Dependencies

Page 1199

Page 1200

IV.I Classes

Page 1201

810 Classes

Taking inspiration from classic pen and paper RPG games, the Stats module lets you create character Classes which

contain a collection of Stats and Attributes. On the other end, Classes can be assigned to any number of characters

or game objects using the Traits component.

This concepts are more easily understood with an example. Let's say we want to create a Warrior character. In this

case, we would create a Class called "Warrior" which would contain the following Attributes:

Health

Stamina

And the following Stats:

Strength

Constitution

Now that we have the Warrior class, we can create a scene Character with the Traits component and assign it the

Warrior Class defined above. This same class can be reused for other characters, such as enemies and NPCs.

Example

Page 1202

811 Stats

Stats are objects that represent a particular numeric trait of a character. This value can evolve throughout the whole

game and its final value can be modified using a Formula.

Common stat values on games are strength , dexterity , wisdom , luck , ...

To create a Stat asset, right click on the Project panel folder you want to create it and select Create → Game Creator

→ Stats → Stat.

The ID value must be unique throughout the whole project and it is used to identify this particular numeric trait. It is

also used in Formulas so be sure to give it a name that's easy to remember.

Common Stats

Page 1203

We recommend sticking to acronyms or short and single worded names. For example, if the Stat represents the

strength of the character, its ID should be str or strength .

The Base Value is the numeric value that the Stat starts with. It is worth noting this value is not necessarily the final

value of the Stat, just a mutable numeric value.

The final value of a Stat is calculated applying a Formula. If none asset is provided, the final value is simply the Base

Value.

Let's say we have a stat with a Base value of 100 and a Formula that multiplies this value by the level (another stat

value) of the character. In this case, the resulting final value of the stat would depend on the character's level.

For example, if the character is at level 1, the value would be 100 (100 * 1). At level 2, it would be 200 (100 * 2), at level

3 it would be 300 (100 * 3), etc...

The UI dropdown contains a list of fields that can be used to display information about this particular Stat on the

game scene, including a name, acronym, description, color and icon.

Naming Stats

Base and Formula

Page 1204

812 Attributes

Attributes are objects that represent a numeric trait of a character, but its value is clamped between a min/max

range.

The most common attribute is the health of a character. Its value could a value clamped between 0 and 100.

To create an Attribute asset, right click on the Project panel folder you want to create it and select Create → Game

Creator → Stats → Attribute.

The ID value must be unique throughout the whole project and it is used to identify this particular numeric trait. It is

also used in Formulas so be sure to give it a name that's easy to remember.

Common Attributes

Page 1205

We recommend sticking to acronyms or short and single worded names. For example, if the Attribute represents the

health of the character, its ID should be hp or health .

The Min Value and Max Value are numeric values that represent the minimum and maximum range of the value. The

Max Value comes from a Stat as this value can change at runtime.

For example, if the attribute represents the health of the player, levelling up could increase the maximum health. In this

case, increasing a Stat called "Max_Health" would automatically increase the max cap of the health Attribute.

The Start Percent field defines the percent at which the character's attribute starts. By default most games should

start with their attributes completely filled.

The UI dropdown contains a list of fields that can be used to display information about this particular Attribute on

the game scene, including a name, acronym, description, color and icon.

Naming Attributes

Max Value is a Stat

Page 1206

813 Classes

Classes are objects that represent a type of character or object with RPG traits, and contains a list of Stats and

Attributes.

Just like in most RPGs, a Class defines a type character with different values. For example, a Mage will have the same

Stats and Attributes as a Knight, but their values and progression may differ, making the Mage grow his magic abilities

at a much higher rate than the Knight, which focuses on its physical ones.

813.1 Class

To create a Class asset, right click on the Project panel folder you want to create it and select Create → Game

Creator → Stats → Class.

By default, a Class has an empty list of fields. The image below represents a Class filled with a collection of Stats

and Attributes.

Classes in an RPG

Page 1207

Page 1208

The eye icon that appears next to all Attributes and Stats is a button that can be toggled. It has no impact on the game

whatsoever. Instead it hides the option from the Traits component. This is useful if you have hundreds of Stats and

Attributes and want to keep the important ones at a glance.

The Class and Description fields are used to display information about the current class in the game's user interface.

813.2 Attributes

The Attributes list defines all the attributes linked to this particular class.

To add a new Attribute, click on the "Add Attribute" button at the bottom and pick (or drag and drop) the desired

Attribute asset.

In this section, the selcted Attribute's starting percent can be overriden, in case a particular Class has a different

starting value than another.

813.3 Stats

The Stats list defines all the stats linked to this particular class, including the ones that define the max cap of

Attributes.

To add a new Stat, click on the "Add Stat" button at the bottom and pick (or drag and drop) the desired Stat asset.

Eye Icon

Page 1209

In this section, the selected Stat base value and formula can be overriden.

When creating multiple RPG classes, such as Mages, Knights and Archers, it's a good practice to have the same

Attributes and Stats. In order to change their progression rates, their values can be overriden within the Class asset

itself.

For example, the wisdom base stat value may have a much higher one in a Mage class than in a Knight.

Override Stat Base and Formula

Page 1210

814 Traits

Traits are components that link a Class asset with a scene game object.

It is important to note that, although Characters will most likely be the objects with a Traits component, these can be

attached to any game object.

For example, to assign the Player with the Knight Class one just has to click on the Player game object "Add

Component" button at the bottom of the Inspector and look for the Traits component.

814.1 Traits in Editor

Once the Player has the Traits component a message appears prompting to assign it a Class asset.

Drag and drop any Class asset onto the designated field and it will change its appearance to display the asset's

information.

Game Objects with Traits

Page 1211

Each Attribute and Stat can be expanded and their values can be overriden, just like in the Class asset.

814.2 Traits at Runtime

Once the game object has a Traits component linked with a Class asset, it is ready to interact in play mode.

To help the designer understand what's happening in play mode and debug any possible problems, the Traits

component changes its Inspector appearance to display real-time information about its current Attribute and Stat

values.

Page 1212

Page 1213

815 Formulas

Formulas are at the core of the Stats module; They allow the game designer to elaborate simple or complex systems

that intertwine different stat and attribute values.

Formulas are written using math expressions. For example the following formula:

Can be used to calculate the damage dealt to an enemy. It calculates the output taking into account the attack stat

from the player and subtracting the defense stat from the enemy.

It is up to the game designer defining how simple or complex these formulas should be.

815.1 Creating a Formula

To create a Formula asset, right click on the Project panel folder you want to create it and select Create → Game

Creator → Stats → Formula.

Math Expressions

source.stat[attack] - target.stat[defense]

Page 1214

The Formula asset has a text field at the top, where the the math expression can be written.

The Help section contains a list of all possible symbols that can be used. For example, to retrieve the final value of a

Stat called "strength" from the caller, use the source.stat[strength] symbol.

Each section can be expanded and collapsed to keep the important information at a glance.

Page 1215

Check the list of all symbols at the end of this page.

The Table field is an optional one, that can be used to reference a Table asset from within the formula expression.

815.2 Symbols

A formula expression is composed of a series of symbols, joined together by a math expression, such as the sum,

subtraction, product and division.

For example, the attack power of a character could be it's base strength value multiplied by its level. In this case, the

expression would be:

815.2.1 Stats

Symbols

source.base[strength] * source.stat[level]

Page 1216

This section covers all values found inside a game object with a Traits component. A stat or attribute can either

come from the Source object or the Target object. For example, when calculating the damage dealt to an enemy,

Source references the attacker and Target the attacked object.

In some cases, there may be no distinction between source and target. For example, when calculating the level of a

character. In this case, we recommend ignoring the Target symbols and use Source.

To get the value of a Stat or Attribute, the target object of the query is first specified, followed by a dot (.) and the

value type. Between brackets, the id of the stat or attribute is specified.

For example, to retrieve the attribute "mana" from the source object it's done using:

base : The base stat value of the object.

stat : The final stat value of the object.

attr : The attribute value of the object.

It is up to the game designer to avoid circular dependencies, and Game Creator will not warn about them. A circular

dependency happens when a formula requires a value, which must be calculated using the first formula. This locks the

process in an infinite loop.

815.2.2 Variables

Variables work very similarly to retrieving Stats and Attributes. The targeted object is first specified, followed by a

dot (.) and the keyword var. And between brackets, the name of the variable.

For example, if a numeric Local Variable attached to the targetted object with the id "hit-counter" should be accessed,

the expression would be:

Source and Target

Stat Example

source.attr[mana]

Circular Formulas

Example

target.var[hit-counter]

Page 1217

For the moment, a Formula can only access Local Variables by name. In a future update, List Variable access will be

supported.

815.2.3 Random

Most skill checks use some sort of random values. The Formula analyzer provides three symbols to generate a

random value.

random[min, max] : Returns a value between min and max, both included.

Using random[1, 4] returns a decimal value between these ranges.

dice[rolls, sides] : For those old-school game designers, you can roll X amount of dices of Y sides and this

symbol will return the sum of values.

Using dice[2, 6] returns the result of rolling 2 dices of 6 sides (the most common one).

chance[value] : Returns 1 if a random value between 0 and 1 is lower or equal than the value specified.

Using chance[0.2] has a 20% chance of returning a value of 1 and an 80% chance of returning 0.

815.2.4 Arithmetic

Number manipulation is also useful and commonly used. For example, to round numbers or choosing between two.

min[a, b] : Returns the lowest value between two.

max[a, b] : Returns the greatest value between two.

round[value] : Returns the value rounded up or down to the closest integer.

floor[value] : Returns the integer part of the value.

ceil[value] : Returns the next integer of the input value.

Local Variables

Random[min, max]

Dice[rolls, sides]

Chance[value]

Page 1218

815.2.5 Tables

Tables are mostly used for player progression, as they map a certain input value to another value. For more

information about Tables see this link.

It is required to provide the Formula with a Table asset.

Table symbols start with table followed by a dot (.) and the type of value to retrieve. The value is specified between

brackets afterwards.

For example, let's say we have a stat called experience and we want to calculate the character's level based on that.

We can use a Table that transforms the accumulated experience points to a value that represents the level. In this case,

the expression would be:

level[value] : Returns the level at from the table based on the input cummulative value.

value[level] : Returns the cummulative value necessary to reach the input level.

increment[level] : Returns the amount left to reach the next level.

current[value] : Returns the value gained at the current level.

next[value] : Returns the value left to gain to reach the next level.

ratio[value] : Returns a unit ratio that represents the progress made at the current level.

Table asset

Level from Experience

table.level[experience]

Page 1219

816 Tables

Commonly used for character progression, Tables are charts that map a range of values to an integer.

816.1 Concepts

Here are some concepts to better understand how Tables work.

Level: An integer value that is calculated based on the cumulative value.

Cumulative Value: This is the total amount of value (or experience) accumulated.

Value: The difference between the current level's cumulative value and the total cumulative value.

816.2 Creating a Table

To create a Table asset, right click on the Project panel folder you want to create it and select Create → Game

Creator → Stats → Table.

Page 1220

A Table asset has a visual chart and a configuration box at the bottom. The chart can be scrubbed to reveal the

different cumulative values at each level.

Page 1221

In the example above, at Level 13, the cumulative value is 1248 and it will require 208 more (for a total of 1455) to reach

Level 14.

816.3 Types of Progressions

A character can progress linearly, exponentially, or at a custom rate. That's why Game Creator provides a range of

different tables for the user to choose from.

To change the type of progression, click onl the Table field and choose one from the dropdown menu:

Manual: Each level requires a pre-defined amount of experience.

Constant: Each level requires the same amount of value (or experience).

Linear: Each level requires a value equal to the product of a constant and the current level.

Geometric: Each level requires a value equal to the current level multiplied by a fixed coefficient rate.

Example

Page 1222

We recommend using Linear Progression for most cases, as it's the one commonly used in games where the player

progressively receives more experience. Geometric Progression is recommended for short games where power ramps

up very quickly (like in MOBAS).

Recommendation

Page 1223

817 Stat Modifiers

We've seen so far that objects with a Traits component can change their Stat and Attribute values at runtime using

Formulas and Tables. However, characters in games can also increment/decrement their stats when equipping

weapons and other kinds of wearables.

This is where Stat Modifiers come into play: They increase or decrease a Stat value by a certain amount, and can be

added and removed at any time.

817.1 Adding Stat Modifiers

To add a Stat Modifier to a Traits component, use the visual scripting Instruction Add Stat Modifier. This instruction

allows to specify a target object, which must have a Traits component, a Stat to affect and a value.

This value can either be a percentage or a constant and can be displayed separately in the UI.

You may have raised an eyebrow when Stat Modifiers can use constant and percentage values, as the result is different

when applying a product after an addition or vice versa. The Stats module always applies percentage based modifiers

first, and then adds any constant modifiers.

Percentage and Constants

Page 1224

817.2 Removing Stat Modifiers

Removing a Stat Modifier is as easy as adding one. All that needs to be done is to use the visual scripting instruction

Remove Stat Modifier and input the same values as a previously added one.

Page 1225

818 Status Effects

Status Effects are temporal ailments that affect a character.

Most RPG games use the same Status Effects, such as Poison, which drains the character's health for a period of

time. However, you can create your own and completely customize the afliction.

818.1 Creating a Status Effect

To create a Status Effect asset, right click on the Project panel folder you want to create it and select Create → Game

Creator → Stats → Status Effect.

A Status Effect has an ID which is used to uniquely identify it among all other afflictions. It is very important to keep

this value unique across the whole project.

The Type field determines whether this effect is positive, negative or neutral for the targeted character. This is useful

when using the instruction Remove Status Effects, where you can choose to remove only those that have a negative

impact.

Page 1226

Max Stack determines how many of the same Status Effect can be active at a give time on a target.

By default, most Status Effects will have a stack of 1, and adding subsequent effects refresh the duration. However,

it is entirely possible to stack multiple (for example) Poison aflictions, increasing their health drain.

The Save toggle determines whether the Status Effect persists after saving and loading back the game. Saving a

Status Effect keeps track of the remaining time.

Has Duration allows the Status Effect to run for a certain amount of time (specified in the Duration field, in seconds).

If this field is unticked, the Status Effect will continue until it's manually removed, using the appropriate visual

scripting instruction.

The UI section allows the user to define any information displayable to the player, such as the name, a description of

what the ailment does, its color and even an icon.

Page 1227

Inside the OnStart, On End and While Active sections is where the logic of the Status Effect goes and it uses Game

Creator's visual scripting tools.

On Start: A list of instructions executed as soon as the Status Effect is added onto a target.

On End: A list of instructions executed when the Status Effect stops taking effect on a target.

While Active: A list of instructions that runs every frame, as long as the Status Effect is active.

Page 1228

For example, a Poison status effect could start spawning a particle effect onto the targeted character using the On

Start instruction list. To damage the player, it would use the While Active instruction list and subtract a bit of the

Target's health every few seconds.

818.2 Adding a Status Effect

To add a Status Effect onto a target you can use the visual scripting instruction Add Status Effect.

All that needs to be done is to select the targeted character, which must have a Traits component, and specify the

type of Status Effect.

Poison

Page 1229

IV.II User Interface

Page 1230

819 User Interface

The Stats module makes it really easy to build flexible user interfaces (UI) using Unity UI.

It comes with a few components that work fairly similar. You can attach each component to any UI game object and

drag and drop any Text and Images to each of its fields.

Stat UI

Attribute UI

Formula UI

Status Effects UI

These components are all found under the Add Component submenu on any game object and navigating to Game

Creator → UI → Stats. For example, this is the Stat UI component.

Page 1231

The first two fields are required: Target is the game object with a Traits component and Stat is the asset to be

referenced by this UI component.

All other fields are optional and will only be updated if a change is detected.

For example, dragging a Text component onto the Value field will change the contents to a numeric value that

represents the selected Stat value.

Stat UI

Page 1232

820 Stat UI

The Stat UI component allows to display the runtime information about a specific target's Stat. To create one, click

on a game object's Add Component button and navigate to Game Creator → UI → Stats → Stat UI.

All fields are optional and all that needs to be done is to drag Text and Image components to the corresponding

fields.

For example, to display the Name of a Stat, drag and drop the Text component onto the Name field and it will

automagically update its content, even if the targeted game object changes.

Stat UI

Page 1233

821 Attribute UI

The Attribute UI component allows to display the runtime information about a specific target's Attribute. To create

one, click on a game object's Add Component button and navigate to Game Creator → UI → Stats → Attribute UI.

All fields are optional and all that needs to be done is to drag Text and Image components to the corresponding

fields.

Page 1234

For example, to display the Name of an Attribute, drag and drop the Text component onto the Name field and it will

automagically update its content, even if the targeted game object changes.

Transitions are a feature that allow the Image fill progress to animate and stall for a certain amount of time.

This is mostly used on health and mana bars, where getting hit makes the HP bar display a second bar below that

decreases after a few seconds, in order for the player to get a sense of the amount of damage taken.

Ticking any of both options reveals two new options below.

Stall Duration: Amount of seconds debounced between the value change and the start of the transition

Transition Duration: Amount of seconds it takes to animate towards the targeted value.

Attribute UI

Transitions

Page 1235

822 Formula UI

The Formula UI component allows to display the result of an expression between two game objects with a Traits

component. To create one, click on a game object's Add Component button and navigate to Game Creator → UI →

Stats → Formula UI.

All fields are optional and all that needs to be done is to drag Text and Image components to the corresponding

fields.

For example, to display the resulting value of a Formula applied to the Player and another character, drag and drop the

Text component onto the Value field and it will automagically update its content, even if any of the targeted game

objects changes.

Formula UI

Page 1236

823 Status Effects UI

Status Effects have two components to display their information.

Status Effect List UI: Gathers information about a targeted game object and manages the concrete list of activet

aflictions.

Status Effect UI: Displays information about a particular afliction. It is spawned by the Status Effect List UI

component.

823.1 Status Effect List UI

To create one, click on a game object's Add Component button and navigate to Game Creator → UI → Stats → Status

Effect List UI.

The Target field should point at the game object with a Traits component.

Types allows to filter which status effects to display: Negative, Positive, Neutral, or any combination of them.

Container and Prefab Status Effect are the most important ones: For each afliction on the targeted character, the

Status Effect List UI component will spawn (or reuse) an instance of a prefab. The spawn location is as a child of the

Container rect transform.

Page 1237

So if the Player has 3 ailments: Poison, Paralyzed and Bleeding, the Status Effect List UI component will spawn 3

instances of the prefab as a child of the Container transform.

Each spawned instance must have, at the root level, the component Status Effect UI component, which communicates

with the Status Effect List UI which afliction to display.

823.2 Status Effect UI

To create one, click on a game object's Add Component button and navigate to Game Creator → UI → Stats → Status

Effect UI.

As can be seen, this component does not have a Target field. Instead, its the Status Effect List UI component that

feeds it the target and concrete afliction.

Example

Page 1238

All fields are optional and automatically update the values according to changes sent by the parent component.

Page 1239

IV.III Visual Scripting

Page 1240

824 Visual Scripting

The Stats module symbiotically works with Game Creator and the rest of its modules using its visual scripting tools.

Instructions

Conditions

Events

Each scripting node allows other modules to use any Stats feature.

The Stats module also comes with a collection of custom Properties. Any interactive element can request the value

of a Stat, Attribute and Formula using the value dropdown, as seen in the image below.

Page 1241

Page 1242

IV.III.I Conditions

Page 1243

825 Conditions

825.1 Sub Categories

Stats

Page 1244

IV.III.I.I Stats

Page 1245

826 Stats

826.1 Conditions

Check Formula

Compare Attribute

Compare Stat

Has Stat Modifiers

Has Status Effect

Is Traits Of Class

Traits Has Attribute

Traits Has Stat

Page 1246

827 Check Formula

827.1 Description

Returns the comparison between the result of a Formula against another value

827.2 Parameters

Name Description

Formula The Formula used in the operation

Source The game object that the Formula identifies as the Source

Target The game object that the Formula identifies as the Target

Compare To The value that the result of the Formula is compared to

827.3 Keywords

Skill Throw Check Dice Lock Pick Charisma Speech

Stats » Check Formula

Page 1247

828 Compare Attribute

828.1 Description

Returns true if the Attribute comparison is successful

828.2 Parameters

Name Description

Traits The targeted game object with a Traits component

Attribute The Attribute type value that is compared

Value The type of value from the attribute to compare

Comparison The comparison operation performed between both values

Compare To The decimal value that is compared against

828.3 Keywords

Health Mana Stamina Magic Life HP MP

Stats » Compare Attribute

Page 1248

829 Compare Stat

829.1 Description

Returns true if the Stat comparison is successful

829.2 Parameters

Name Description

Traits The targeted game object with a Traits component

Stat The Stat type value that is compared

Comparison The comparison operation performed between both values

Compare To The decimal value that is compared against

829.3 Keywords

Vitality Constitution Strength Dexterity Defense Armor Magic Wisdom Intelligence

Stats » Compare Stat

Page 1249

830 Has Stat Modifiers

830.1 Description

Returns true if the targeted Stat component has a Stat Modifier

830.2 Parameters

Name Description

Target The targeted game object with a Traits component

Stat The Stat that checks if it has a Stat Modifier

830.3 Keywords

Skill Throw Check Dice Lock Pick Charisma Speech

Stats » Has Stat Modifiers

Page 1250

831 Has Status Effect

831.1 Description

Returns true if the game object has a particular Status Effect active

831.2 Parameters

Name Description

Target The targeted game object with a Traits component

Status Effect The type of Status Effect that is checked

Min Amount The minimum amount of stacked and active Status Effects

831.3 Keywords

Buff Debuff Enhance Ailment Blind Dark Burn Confuse Dizzy Stagger Fear Freeze Paralyze Shock

Silence Sleep Silence Slow Toad Weak Strong Poison Haste Protect Reflect Regenerate Shell

Armor Shield Berserk Focus Raise

Stats » Has Status Effect

Page 1251

832 Is Traits of Class

832.1 Description

Returns true if the targeted Traits component has the specified Class

832.2 Parameters

Name Description

Traits The targeted game object with a Traits component

Class The Class asset

Stats » Is Traits of Class

Page 1252

833 Traits has Attribute

833.1 Description

Returns true if the targeted Traits component has the specified Attribute

833.2 Parameters

Name Description

Traits The targeted game object with a Traits component

Attribute The Attribute asset

Stats » Traits has Attribute

Page 1253

834 Traits has Stat

834.1 Description

Returns true if the targeted Traits component has the specified Stat

834.2 Parameters

Name Description

Traits The targeted game object with a Traits component

Stat The Stat asset

Stats » Traits has Stat

Page 1254

IV.III.II Events

Page 1255

835 Events

835.1 Sub Categories

Stats

Page 1256

IV.III.II.I Stats

Page 1257

836 Stats

836.1 Events

On Attribute Change

On Stat Change

On Status Effect Change

Page 1258

837 On Attribute Change

837.1 Description

Executed when the value of a specific game object's Attribute is modified

837.2 Parameters

Name Description

Target The targeted game object with a Traits component

When Determines if the event executes when the Attribute increases, decreases or both

Attribute The Attribute from which the event detects its changes

837.3 Keywords

Health HP Mana MP Stamina

Stats » On Attribute Change

Page 1259

838 On Stat Change

838.1 Description

Executed when the value of a specific game object's Stat is modified. Including due to Stat Modifiers

838.2 Parameters

Name Description

Target The targeted game object with a Traits component

When Determines if the event executes when the Stat increases, decreases or both

Stat The Stat from which the event detects its changes

838.3 Keywords

Health HP Mana MP Stamina

Stats » On Stat Change

Page 1260

839 On Status Effect Change

839.1 Description

Executed when a Status Effect is added or removed from a Traits component

839.2 Parameters

Name Description

Target The targeted game object with a Traits component

Status Effect Determines if the event detects any Status Effect change or a specific one

839.3 Keywords

Buff Debuff Enhance Ailment Blind Dark Burn Confuse Dizzy Stagger Fear Freeze Paralyze Shock

Silence Sleep Silence Slow Toad Weak Strong Poison Haste Protect Reflect Regenerate Shell

Armor Shield Berserk Focus Raise

Stats » On Status Effect Change

Page 1261

IV.III.III Instructions

Page 1262

840 Instructions

840.1 Sub Categories

Stats

Page 1263

IV.III.III.I Stats

Page 1264

841 Stats

841.1 Sub Categories

Ui

841.2 Instructions

Add Stat Modifier

Add Status Effect

Change Attribute

Change Stat

Clear Status Effects Type

Remove Stat Modifier

Remove Status Effect

Set Attribute

Set Formula

Set Stat

Set Status Effect

Page 1265

842 Add Stat Modifier

842.1 Description

Adds a value Modifier to the selected Stat on a game object's Traits component

842.2 Parameters

Name Description

Target The targeted game object with a Traits component

Stat The Stat that removes the Modifier

Type If the Modifier changes the Stat by a constant value or by a percentage

Value The constant or percentage-based value of the Modifier

842.3 Keywords

Slot Increase Equip Fortify Vitality Constitution Strength Dexterity Defense Armor Magic Wisdom

Intelligence

Stats » Add Stat Modifier

Page 1266

843 Add Status Effect

843.1 Description

Adds a Status Effect to the selected game object's Traits component

843.2 Parameters

Name Description

Target The targeted game object with a Traits component

Status Effect The type of Status Effect that is added

843.3 Keywords

Buff Debuff Enhance Ailment Blind Dark Burn Confuse Dizzy Stagger Fear Freeze Paralyze Shock

Silence Sleep Silence Slow Toad Weak Strong Poison Haste Protect Reflect Regenerate Shell

Armor Shield Berserk Focus Raise

Stats » Add Status Effect

Page 1267

844 Change Attribute

844.1 Description

Changes the current Attribute value of a game object's Traits component

844.2 Parameters

Name Description

Target The targeted game object with a Traits component

Attribute The Attribute type that changes its value

Change The value changed

844.3 Keywords

Health HP Mana MP Stamina

Stats » Change Attribute

Page 1268

845 Change Stat

845.1 Description

Changes the base Stat value of a game object's Traits component

845.2 Parameters

Name Description

Target The targeted game object with a Traits component

Stat The Stat type that changes its value

Change The value changed

845.3 Keywords

Vitality Constitution Strength Dexterity Defense Armor Magic Wisdom Intelligence

Stats » Change Stat

Page 1269

846 Clear Status Effects Type

846.1 Description

Clears any Status Effects based on their type from the selected game object's Traits component

846.2 Parameters

Name Description

Target The targeted game object with a Traits component

Types The type of Status Effects that are cleared

846.3 Keywords

Buff Debuff Enhance Ailment Blind Dark Burn Confuse Dizzy Stagger Fear Freeze Paralyze Shock

Silence Sleep Silence Slow Toad Weak Strong Poison Haste Protect Reflect Regenerate Shell

Armor Shield Berserk Focus Raise

Stats » Clear Status Effects Type

Page 1270

847 Remove Stat Modifier

847.1 Description

Removes an equivalent Modifier from the selected Stat on a game object's Traits component.

847.2 Parameters

Name Description

Target The targeted game object with a Traits component

Stat The Stat that receives the Modifier

Type If the Modifier changes the Stat by a constant value or by a percentage

Value The constant or percentage-based value of the Modifier

847.3 Keywords

Slot Decrease Unequip Weaken Vitality Constitution Strength Dexterity Defense Armor Magic

Wisdom Intelligence

Stats » Remove Stat Modifier

Page 1271

848 Remove Status Effect

848.1 Description

Removes a Status Effect from the selected game object's Traits component

848.2 Parameters

Name Description

Target The targeted game object with a Traits component

Amount Indicates how many Status Effects are removed at most

Status Effect The type of Status Effect that is removed

848.3 Keywords

Buff Debuff Enhance Ailment Blind Dark Burn Confuse Dizzy Stagger Fear Freeze Paralyze Shock

Silence Sleep Silence Slow Toad Weak Strong Poison Haste Protect Reflect Regenerate Shell

Armor Shield Berserk Focus Raise

Stats » Remove Status Effect

Page 1272

849 Set Attribute

849.1 Description

Sets a Attribute value

849.2 Parameters

Name Description

To Where to store the Attribute asset

Attribute The Attribute asset to store

Stats » Set Attribute

Page 1273

850 Set Formula

850.1 Description

Sets a Formula value

850.2 Parameters

Name Description

To Where to store the Formula asset

Formula The Formula asset to store

Stats » Set Formula

Page 1274

851 Set Stat

851.1 Description

Sets a Stat value

851.2 Parameters

Name Description

To Where to store the Stat asset

Stat The Stat asset to store

Stats » Set Stat

Page 1275

852 Set Status Effect

852.1 Description

Sets a Status Effect value

852.2 Parameters

Name Description

To Where to store the Status Effect asset

Status Effect The Status Effect asset to store

Stats » Set Status Effect

Page 1276

IV.III.III.I.I UI

Page 1277

853 Ui

853.1 Instructions

Change Attributeui Attribute

Change Attributeui Target

Change Statui Stat

Change Statui Target

Change Status Effects List Ui Target

Page 1278

854 Change AttributeUI Attribute

854.1 Description

Changes the Attribute from a Attribute UI component

854.2 Parameters

Name Description

Attribute UI The game object with the Attribute UI component

Attribute The new Attribute asset

Stats » UI » Change AttributeUI Attribute

Page 1279

855 Change AttributeUI Target

855.1 Description

Changes the targeted game object of an Attribute UI component

855.2 Parameters

Name Description

Attribute UI The game object with the Attribute UI component

Target The new targeted game object with a Traits component

Stats » UI » Change AttributeUI Target

Page 1280

856 Change StatUI Stat

856.1 Description

Changes the Stat asset from a Stat UI component

856.2 Parameters

Name Description

Stat UI The game object with the Stat UI component

Stat The new Stat asset

Stats » UI » Change StatUI Stat

Page 1281

857 Change StatUI Target

857.1 Description

Changes the targeted game object of an Stat UI component

857.2 Parameters

Name Description

Stat UI The game object with the Stat UI component

Target The new targeted game object with a Traits component

Stats » UI » Change StatUI Target

Page 1282

858 Change Status Effects List UI Target

858.1 Description

Changes the targeted game object of an Status Effects List UI component

858.2 Parameters

Name Description

Status Effects List UI The game object with the Status Effects List UI component

Target The new targeted game object with a Traits component

Stats » UI » Change Status Effects List UI Target

Page 1283

IV.IV Releases

Page 1284

859 Releases

859.1 2.6.18

Enhances

Editor: Support for Unity 6

859.2 2.6.17

Enhances

Formula: Display Table field at the top

Fixes

Stat Modifiers: Not raising event when using Clear Modifiers

859.3 2.6.16

Fixes

Instruction: Set Attribute incorrect icon

859.4 2.6.15

(Latest)

Released October 18, 2024

Released July 30, 2024

Released March 4, 2024

Page 1285

This version breaks compatibility with previous versions. Stats, Attributes, Status Effects and Formulas are now

dynamic Properties and can be stored and retrieved using Local and Global Variables.

New

Instruction: Set Attribute

Instruction: Set Stat

Instruction: Set Status Effect

Instruction: Set Formula

Condition: Traits is of Class

Condition: Traits contains Stat

Condition: Traits contains Attribute

UI: Option display Stat UI if has modifiers

Changes

Properties: Attributes are now Properties

Properties: Stats are now Properties

Properties: Status Effects are now Properties

Properties: Formulas are now Properties

Fixes

Examples: Demo scenes use new Properties

859.5 2.5.14

Released February 23, 2024

Page 1286

This version breaks compatibility with previous versions and will only work with Game Creator 2.13.43 or higher.

Changes

Status Effects: More performant instructions

UX: Different layout for Stat overrides

UX: Different layout for Attribute overrides

Internal: Support for Core 2.13.42 version

Fixes

Stat Modifiers: Clear method does not zero value

UI: Attribute scale on Y axis scales on X

859.6 2.4.13

New

Status Effect: Option to make them Hidden

Fixes

Examples: Compatibility with latest core version

859.7 2.4.12

Fixes

Formulas: Source and Target only use Traits components

Formulas: Incorrect Regex expressions in parsing clauses

Examples: Not working with latest core version

859.8 2.4.11

Released October 31, 2023

Released August 31, 2023

Released June 27, 2023

Page 1287

New

UI: Display attributes as independent units

Condition: Has Stat Modifiers

Property: Stat and Attribute Sprite values

Examples: New Attribute Unit example

Changes

Formulas: New precomputable math library

Fixes

Formulas: Chance ratio is inverted

Formulas: Error when Tables are missing

859.9 2.3.10

New

Class: Contains Sprite field

Class: Contains Color field

Property: Get Class/Traits/Stat/Attribute Sprite

Property: Get Class/Traits/Stat/Attribute Color

Settings: Displays current and update version

Changes

Signature format from Core 2.9.34

Property: Reference Status Effects Last Added

Property: Reference Status Effects Last Removed

859.10 2.2.9

Released June 12, 2023

Released March 20, 2023

Page 1288

New

Property: Last Formula Result

Changes

Copy-Runners with less memory footprint

Fixes

Formula: Incorrect parenthesis parsing

Traits debug view display up to two decimals

Missing Text Mesh Pro assembly reference

859.11 2.1.8

Fixes

Constant Table: Experience calculation

Geometry Table: Experience calculation

859.12 2.1.7

Fixes

Example: Regenerate Mana Exception

Manual Progression Table incorrect Level

Light theme with dark background in Table

859.13 2.1.6

Released November 8, 2022

Released September 21, 2022

Released August 21, 2022

Page 1289

New

Option to uninstall module

Fixes

Serialization error during domain reloads

859.14 2.1.5

Fixes

Incorrect Stat Modifiers application order

Crash when overriding Trait component values

Math expressions support line breaks

Removed duplicate internal method

859.15 2.1.4

New

Property: Stat Modifiers value

Enhances

Formulas can have multiple lines

Moved UI components to submenu

Changes

Example scenes compatibility

Fixes

Attribute UI: Scale options disappeared

Incorrect caching of Status Effects

Alignment of elements in Inspector

Released June 24, 2022

Released May 12, 2022

Released March 25, 2022

Page 1290

859.16 2.0.3

Enhances

Classes installer has no dependencies

Easier to understand examples

859.17 2.0.2

New

Instruction: Change AttributeUI Attribute

Instruction: Change StatUI Stat

Enhances

UI instructions are now found under Stats/UI/

Disallow multiple Traits component per object

Fixes

Event: Attribute Change not running

859.18 2.0.1

New

First release

Released January 28, 2022

Released November 22, 2021

Released November 19, 2021

Page 1291

V. Quests

Page 1292

860 Quests

Between main quests, side quests, bestiary and flora information gathering, lore, ... Managing the progress of the

game can quickly become a daunting task (no pun intended).

The Quests module aims to help automatizing the creation and management of quests using a simple set of rules.

These rules allow to easily create any type of quests while keeping it intuitive and easy to modify and iterate over.

Moreover, the Quests module also comes with common user interface tools, such as a Minimap, visual Indicators

and a Navigation Compass system that automagically displays active Tasks and where the destination is.

Get Quests

The Quests module is an extension of Game Creator 2 and won't work without it

Requirements

https://gamecreator.link/quests
https://gamecreator.link/core

Page 1293

861 Setup

Welcome to getting started with the Quests module. In this section you'll learn how to install this module and get

started with the examples which it comes with.

861.1 Prepare your Project

Before installing the Quests module, you'll need to either create a new Unity project or open an existing one.

It is important to note that Game Creator should be present before attempting to install any module.

861.2 Install the Quests module

If you haven't purchased the Quests module, head to the Asset Store product page and follow the steps to get a copy

of this module.

Once you have bought it, click on Window → Package Manager to reveal a window with all your available assets.

Type in the little search field the name of this package and it will prompt you to download and install the latest stable

version. Follow the steps and wait till Unity finishes compiling your project.

861.3 Examples

We highly recommend checking the examples that come with the Quests module. To install them, click on the Game

Creator dropdown from the top toolbar and then the Install option.

The Installer window will appear and you'll be able to manage all examples and template assets you have in your

project.

Examples: A collection of scenes with different use-case scenarios

UI: A bundle of common user interface elements

Game Creator

Page 1294

The Examples requires all the skins in order to work.

Clicking on the Examples install button will install all dependencies automatically.

Once you have the examples installed, click on the Select button or navigate to

Plugins/GameCreator/Installs/Quests.Examples/ .

Dependencies

Page 1295

Page 1296

V.I Quests

Page 1297

862 Quest

The Quest asset contains a collection of Tasks that are required to be completed in order to consider the Quest

fulfilled.

A naive approach is to consider a single Quest as the main quest, while having multiple Quest assets for each side-

quest of a game. However, because the main quest of a game might quickly become very big, it's advisable to split it

into multiple Quests and activate these when completing the previous ones.

At the end though, it's you who decides how to organize the Quests of your game.

To create a new Quest asset, right click on the Project Panel and select Create → Game Creator → Quests → Quest.

Splitting Quests

Page 1298

862.1 Overview

The Quest asset has three very distinct sections:

The top section includes general information about the Quest such as its Name or a Description (if any). It also

optionally allows to determine a Color and a Sprite image used in UI.

The Type field determines whether the Quest is a hidden quest, or a normal one.

Hidden quests can be hidden from UI elements and are useful for setting up missions that should not be displayed to

the user. For example, an achievement system.

The Sorting Order determines the priority of the Quest compared to the rest, when being displayed as a list on UI

elements. A Quest with a higher value will be displayed above other Quest assets.

The ID is a unique identifier that distinguishes a Quest from others.

If there are two Quest assets with the same ID value, an error message will appear above. To resolve it, click on any of

the fields and it will reveal a button that regenerates the current value with a unique one.

The second section of the Quest asset is the Tasks Hierarchy, which controls how the Quest runs. We cover this

section in detail on the Tasks page.

The last section contains a collection of Instructions that are executed when the Quest changes its state.

Hidden Quests

Two Quests with the same ID

Page 1299

For example, the On Complete instructions will be executed as soon as the Quest is successfully completed. This can

be used to give the Player some rewards, display a notification, etc...

862.2 States

A Quest starts in an Inactive state. In order to start a quest, the instruction Quest Activate can be used, which will

enable it in a particular Journal component.

When activating a Quest, the first root Task is also activated. This process cascades to any other subtasks the Task

may have. Once the first Task is completed, its next sibling is Activated. This process is repeated until all root Tasks

are finished.

When a Quest is Completed

Page 1300

See the Tasks States for more information about running tasks.

An Active quest can then either transition to Inactive, or one of the following Finished states:

Completed

Abandoned

Failed

A quest is automatically Completed if all of its root tasks are completed (in sequence, from top to bottom). If a root

task is Abandoned or Failed, the quest will also be automatically Abandoned or Failed respectively.

At any point, a quest can be deactivated using the Quest Deactivate instruction.

About Tasks

Page 1301

863 Tasks

At the bottom section of the Quest asset there's the Tasks Hierarchy panel, which controls the logic behind the

Quest.

A Task is a node that can contain a series of Subtasks, which in turn may contain other Subtasks.

The two buttons at the left of the top toolbar allow creating a new Task: The left one creates a Task node as a sibling

of the current selected one, while the right one creates a child Task.

The right button toggles the Task Inspector tab, which allows to edit the currently selected Task details.

You can hold the left mouse button over a Task and drag it somewhere else to reorganize your Tasks

863.1 Task States

A Task can be in one of the following states at any given time:

Inactive: The default state.

Active: An active task is currently being executed and can transition to a finished state.

Completed: The task has been successfully resolved.

Abandoned: The task has been abandoned, with similar effects to the failed state.

Failed: The task has been failed.

What is a Task

Drag to move Tasks

Page 1302

A Task can't transition to and from any state. Instead, there's a set of rules that define those.

An Inactive Task can only transition to an Active state.

An Active Task can transition to either Inactive, or to any finished state.

A Finished state can only transition to an Inactive state.

A Finished state means either Completed, Abandoned or Failed.

If an Inactive task tries to change its state to Completed, the command will be ignored because only an Active task can

be completed.

863.2 Task Anatomy

To modify the properties of a Task, select it from the Tasks Hierarchy and reveal the Inspector on the right side by

clicking on the top-right button of its toolbar.

Finished States

Switch to an invalid State

Page 1303

863.2.1 Settings

The Completion mode field determines how this Task is completed, if it has any subtasks.

More information about Subtasks at the Running Subtasks section.

The Is Hidden field determines whether this particular task should be considered as hidden. This is used to skip

displaying a particular task-line in the UI.

The Name and Description fields are also used by the user interface to communicate the information about this

particular task.

More Information

Page 1304

The next fields, Color and Sprite, are optional and can be used to customize the appearance of different tasks.

For example, it may be desirable to display a different icon on the HUD depending on the task at hand. Some

investigation tasks might display a magnifier, while an assassination task could display a skull icon.

863.2.2 Counters

The Use Counter allows to define a task as a countable one or not. The options available are None, Value and

Property.

863.2.2.1 No Counter

By default, a task is set to None by default. This means that the task must be completed using the Complete Task

instruction. However, tasks can also include a counter that automatically completes the quest when the value and

the counter become equal.

The most common example of a Counter task is when an NPC asks the player to kill a certain number of enemies. The

counter would be the amount of enemies to kill, while the value would be the enemies killed so far.

As soon as the value and the counter are the same, the task is automatically completed.

863.2.2.2 Value Counter

This option displays a single Count To field, which is the value to reach in order to complete this task.

For example, if an NPC tasks the player to kill 5 boars, the Count To field would be 5. The starting value is zero at the

beginning, and can be changed using the Task Value instruction.

In this case, the instruction would increment in +1 the value of the task, automatically completing it after defeating 5

boars.

Using Sprites for Tasks

Example of Counter task

Kill 5 boars

Page 1305

863.2.2.3 Property Counter

The Property option is a bit more advanced, and allows to also count up to a certain amount in order to

automatically complete the task, but the value is synchronized with a dynamic property.

The Count To field, just like in the previous option, defines the desired value to reach.

The Value From field is a dynamic property that allows to choose the source from which the current value is taken.

For example, a Global Variable.

This option allows to seamlessly combine Quests with other Game Creator modules. For example, a quest giver may

ask to collect a certain amount of Potions, which is defined as an item in the Inventory module. The Value From, in this

case, would be the amount of Potions.

The Detect When event is used to determine when the synchronization should be executed. For example, if the

dynamic value comes from a Global Name Variable, the detection should be set to run when a global variable

changes.

Similarly, if we are using the amount of a particular Item of the Inventory module as the value of a counter task, the

detection should be set whenever the Bag component changes.

863.2.3 Instructions

From other Game Creator modules

Follow-up with the Inventory module

Page 1306

A Task, just like a Quest, has a collection of Instructions that can be executed whenever a task changes its state.

The On Deactivate is executed when a task changes its state to Inactive.

The On Activate is executed when a task changes its state to Active.

The On Complete is executed when a task changes its state to Completed.

The On Abandon is executed when a task changes its state to Abandoned.

The On Fail is executed when a task changes its state to Failed.

863.3 Running Subtasks

A Task that has one or more child Subtasks will be automatically Completed, Abandoned or Failed, depending on the

value of its Completion field.

863.3.1 Subtasks in Sequence

This type of Task activates the first Subtask as soon as it is activated, leaving any subsequent subtasks inactive.

When the Subtask is completed, the next sibling task is activated. This is repeated until all Subtasks are completed,

at which point the Task is automatically completed too.

If any Subtask is abandoned or failed, the Task is also abandoned or failed, respectively.

Page 1307

Running a series of tasks in order is the most common type. For example, a quest-giver asking to find its Magic Sword

and return it to them. In this case, finding the Magic Sword would be the first subtask, and completing it would activate

the second subtask: returning the item to the quest-giver.

863.3.2 Subtasks in Combination

This type of Task activates all Subtasks as soon as it is activated.

These Subtasks can be completed in any order, and as soon as all of them are completed, the Task will also become

completed.

If any Subtask is abandoned or failed, the Task is also abandoned or failed, respectively.

This type is mostly used during investigation segments: The player arriving at a crime scene and having to investigate

multiple clues, in any order. For example, talking to a witness, investigating the footprints and doing a preliminary

autopsy on the victim. After all these subtasks have been completed, the task will be completed too.

863.3.3 Any Subtask

This type of Task activates all Subtasks as soon as it is activated.

Use case

Use case

Page 1308

As soon as any Subtask is completed, the Task will automatically be completed too and leave the rest of the

Subtasks as active.

Because it only requires a single Subtask to be completed in order to complete the Task, the Task won't be

abandoned or failed unless there are no other inactive Subtasks.

This type is used when making branching decisions where completing one subtask determines a different path than

completing another subtask. For example, killing a targeted enemy or sparing its life. Once a decision has been made

(aka a subtask has been completed), it locks the player from doing the other one.

863.3.4 Manual

This type of Task does not activate any Subtasks when activated.

If the other modes do not fit a particular quest flow, this one can be selected in order to customize each step, as it

doesn't automatize any changes.

There aren't any particular use cases. However, if you want to take full control over when a task is completed (for

example, despite its children subtasks not being completed), this might be useful.

Use case

Use case

Page 1309

864 Tracking

Tracking a Quest means the player will prominently see that particular quest highlighted among the rest.

For example, by default, the HUD will only display those Quests being tracked, so the player is not overwhelmed having

too many quests active at a time.

The Quests module allows to either limit the amount of quests tracked to a single one, or multiple ones. You can

customize this behavior by changing it in the dropdown menu field in the Journal component.

To start Tracking a quest, you can either use the Quest Track instruction, or let the UI components that the Quests

module comes with, handle it.

The UI Journal template that the Quests module comes with, contains an example where a list of active quests are

displayed on the left side, and selecting one allows to toggle its tracking state.

To Untrack a quest, you can either toggle it from the UI elements or use the Quest Untrack instruction. Alternatively,

you can also stop tracking all quests by using the Quests Untrack All instruction.

HUD

Working examples

Page 1310

865 Points of Interest

A Point of Interest is a highlighted location that is of interest to the player.

865.1 Setup

Defining one is done by adding either the Task Point of Interest or the Custom Point of Interest.

Task Point of Interest: Defines a point of interest linked to a specific Task. When the task is in an Active state, the

point of interest is enabled. Otherwise, it's disabled.

Custom Point of Interest: Defines a point of interest not bound to any specific task or quest. Useful for

positioning objects that are not related to quests, such as enemies, collectibles, etc, ...

865.2 Showing Points of Interest

A Point of Interest is automatically displayed using one of the Points of Interest UI components.

The Quests module comes with a collection of game-ready systems that you can drag and drop onto your game and

they will automagically work.

For example, the Minimap prefab from the examples displays a rectangle on the bottom right corner of the screen.

Page 1311

The Compass from the examples shows a minimalist line at the top of the screen with elements that fade in and out

as they are shown on-screen.

The Indicators prefab displays the icon of the Task directly on top of the screen space position of the scene object.

Page 1312

By default, the Indicators prefab displays off-screen elements at the closest edge of the screen, with an arrow

indicating its direction.

However, this can be disabled unticking the Keep in Bounds field from the Indicators UI component.

Off-Screen Indicators

Page 1313

866 Journal

The Journal is a component that keeps track of the current state of Quests and its tasks.

It is usually attached to the Player character object so it's easy to access. However, you can decide to attach it to some

other object or even have multiple characters, each with their own quests log.

866.1 Tracking

The Journal component determines whether it can track only one Quest at a time, or multiple quests. If the value is

set to Single Quest, attempting to track a quest will untrack any previous tracked one.

However, if the value is set to Multiple Quests, tracking another one will insert it to the list of tracked quests, without

untracking any others.

To know more about tracking quests and how is it used, see the Tracking section.

866.2 Debugging

After entering play-mode, the Journal component changes its appearance and will display real-time information

about the current state of Quests and Tasks.

Journal on Player

More information

Page 1314

This allows to easily debug whether a Quest has been properly activated, which Tasks are completed, and so on.

You can click on the Quest and Task to toggle its expand state, in case there is a lot of visual noise due to the amount

of elements.

866.3 Saving the Game

The Journal doesn't automatically store the quests and tasks states. In order to do so, simply add the Remember

component to where the Journal component is and add the Journal memory.

This will automatically handle saving the state of Tasks and Quests, and loading them back when a previously saved

game is loaded.

Expand and Collapse

Page 1315

V.II Visual Scripting

Page 1316

867 Visual Scripting

The Quests module symbiotically works with Game Creator and the rest of its modules using its visual scripting

tools.

Instructions

Conditions

Events

Each scripting node allows other modules to use any Quests feature.

Page 1317

V.II.I Conditions

Page 1318

868 Conditions

868.1 Sub Categories

Quests

Page 1319

V.II.I.I Quests

Page 1320

869 Quests

869.1 Sub Categories

Groups

869.2 Conditions

Are Quests Equal

Is Quest Abandoned

Is Quest Active

Is Quest Completed

Is Quest Failed

Is Quest Inactive

Is Task Abandoned

Is Task Active

Is Task Completed

Is Task Failed

Is Task Inactive

Page 1321

870 Are Quests Equal

870.1 Description

Returns true if two given Quest assets are the same

870.2 Keywords

Journal Mission Task

Quests » Are Quests Equal

Page 1322

871 Is Quest Abandoned

871.1 Description

Returns true if a Quest from a Journal is abandoned

871.2 Keywords

Journal Mission

Quests » Is Quest Abandoned

Page 1323

872 Is Quest Active

872.1 Description

Returns true if a Quest from a Journal is active

872.2 Keywords

Journal Mission

Quests » Is Quest Active

Page 1324

873 Is Quest Completed

873.1 Description

Returns true if a Quest from a Journal is completed

873.2 Keywords

Journal Mission

Quests » Is Quest Completed

Page 1325

874 Is Quest Failed

874.1 Description

Returns true if a Quest from a Journal is failed

874.2 Keywords

Journal Mission

Quests » Is Quest Failed

Page 1326

875 Is Quest Inactive

875.1 Description

Returns true if a Quest from a Journal is inactive

875.2 Keywords

Journal Mission

Quests » Is Quest Inactive

Page 1327

876 Is Task Abandoned

876.1 Description

Returns true if a Task from a Journal is abandoned

876.2 Keywords

Journal Mission

Quests » Is Task Abandoned

Page 1328

877 Is Task Active

877.1 Description

Returns true if a Task from a Journal is active

877.2 Keywords

Journal Mission

Quests » Is Task Active

Page 1329

878 Is Task Completed

878.1 Description

Returns true if a Task from a Journal is completed

878.2 Keywords

Journal Mission

Quests » Is Task Completed

Page 1330

879 Is Task Failed

879.1 Description

Returns true if a Task from a Journal is failed

879.2 Keywords

Journal Mission

Quests » Is Task Failed

Page 1331

880 Is Task Inactive

880.1 Description

Returns true if a Task from a Journal is inactive

880.2 Keywords

Journal Mission

Quests » Is Task Inactive

Page 1332

V.II.I.I.I GROUPS

Page 1333

881 Groups

881.1 Conditions

Are All Quests Completed

Is Any Quest Completed

Page 1334

882 Are all Quests Completed

882.1 Description

Returns true if at least one Quest from a List is Complete

882.2 Keywords

Journal Mission Group

Quests » Groups » Are all Quests Completed

Page 1335

883 Is any Quest Completed

883.1 Description

Returns true if at least one Quest from a List is Complete

883.2 Keywords

Journal Mission Group

Quests » Groups » Is any Quest Completed

Page 1336

V.II.II Events

Page 1337

884 Events

884.1 Sub Categories

Quests

Page 1338

V.II.II.I Quests

Page 1339

885 Quests

885.1 Events

On Any Quest Track

On Any Quest Untrack

On Quest Abandon

On Quest Activate

On Quest Complete

On Quest Deactivate

On Quest Fail

On Task Abandon

On Task Activate

On Task Complete

On Task Deactivate

On Task Fail

On Task Value Change

Page 1340

886 On Any Quest Track

886.1 Description

Executes after a Quest from a Journal starts being tracked

886.2 Keywords

Journal Mission Follow

Quests » On Any Quest Track

Page 1341

887 On Any Quest Untrack

887.1 Description

Executes after a Quest from a Journal stops being tracked

887.2 Keywords

Journal Mission Follow

Quests » On Any Quest Untrack

Page 1342

888 On Quest Abandon

888.1 Description

Executes after a Quest from a Journal is abandoned

888.2 Keywords

Journal Mission

Quests » On Quest Abandon

Page 1343

889 On Quest Activate

889.1 Description

Executes after a Quest from a Journal is activated

889.2 Keywords

Journal Mission

Quests » On Quest Activate

Page 1344

890 On Quest Complete

890.1 Description

Executes after a Quest from a Journal is completed

890.2 Keywords

Journal Mission

Quests » On Quest Complete

Page 1345

891 On Quest Deactivate

891.1 Description

Executes after a Quest from a Journal is deactivated

891.2 Keywords

Journal Mission

Quests » On Quest Deactivate

Page 1346

892 On Quest Fail

892.1 Description

Executes after a Quest from a Journal is failed

892.2 Keywords

Journal Mission

Quests » On Quest Fail

Page 1347

893 On Task Abandon

893.1 Description

Executes after a Task from a Journal is abandoned

893.2 Keywords

Journal Mission

Quests » On Task Abandon

Page 1348

894 On Task Activate

894.1 Description

Executes after a Task from a Journal is activated

894.2 Keywords

Journal Mission

Quests » On Task Activate

Page 1349

895 On Task Complete

895.1 Description

Executes after a Task from a Journal is completed

895.2 Keywords

Journal Mission

Quests » On Task Complete

Page 1350

896 On Task Deactivate

896.1 Description

Executes after a Task from a Journal is deactivated

896.2 Keywords

Journal Mission

Quests » On Task Deactivate

Page 1351

897 On Task Fail

897.1 Description

Executes after a Task from a Journal is failed

897.2 Keywords

Journal Mission

Quests » On Task Fail

Page 1352

898 On Task Value Change

898.1 Description

Executes after a specific Active Task from a Journal changes its value

898.2 Keywords

Journal Mission

Quests » On Task Value Change

Page 1353

V.II.III Instructions

Page 1354

899 Instructions

899.1 Sub Categories

Quests

Page 1355

V.II.III.I Quests

Page 1356

900 Quests

900.1 Instructions

Quest Activate

Quest Deactivate

Quest Track

Quest Untrack All

Quest Untrack

Set Quest

Task Abandon

Task Complete

Task Fail

Task Value

Page 1357

901 Quest Activate

901.1 Description

Changes the state of a Quest on a Journal component to Active

901.2 Parameters

Name Description

Journal The Journal component that changes the state of the Quest

Quest The Quest asset reference

Wait to Complete Whether to wait until the Quest finishes running its Instructions

901.3 Keywords

Mission Start Active Enable

Quests » Quest Activate

Page 1358

902 Quest Deactivate

902.1 Description

Changes the state of a Quest and its Tasks on a Journal component to Inactive

902.2 Parameters

Name Description

Journal The Journal component that changes the state of the Quest

Quest The Quest asset reference

Wait to Complete Whether to wait until the Quest finishes running its Instructions

902.3 Keywords

Mission Start Deactivate Inactive Disable

Quests » Quest Deactivate

Page 1359

903 Quest Track

903.1 Description

Starts tracking a Quest if it is active

903.2 Parameters

Name Description

Journal The Journal component that starts tracking the Quest

Quest The Quest asset reference

903.3 Keywords

Mission Follow Bookmark

Quests » Quest Track

Page 1360

904 Quest Untrack All

904.1 Description

Stops tracking all Quests that are being tacked

904.2 Parameters

Name Description

Journal The Journal component that tracks the Quest

904.3 Keywords

Mission Follow Bookmark Track

Quests » Quest Untrack All

Page 1361

905 Quest Untrack

905.1 Description

Stops tracking a Quest if it is being tacked

905.2 Parameters

Name Description

Journal The Journal component that tracks the Quest

Quest The Quest asset reference

905.3 Keywords

Mission Follow Bookmark Track

Quests » Quest Untrack

Page 1362

906 Set Quest

906.1 Description

Sets a Quest value equal to another one

906.2 Parameters

Name Description

Set Where the value is set

From The value that is set

906.3 Keywords

Change Task Variable Asset

Quests » Set Quest

Page 1363

907 Task Abandon

907.1 Description

Abandons the state of an active Task on a Journal component

907.2 Parameters

Name Description

Journal The Journal component that changes the state of the Task

Quest The Quest asset reference

Task The Task identifier from the Quest

Wait to Complete Whether to wait until the Task finishes running its Instructions

907.3 Keywords

Mission Leave Forget Stop Restart

Quests » Task Abandon

Page 1364

908 Task Complete

908.1 Description

Completes the state of an active Task on a Journal component

908.2 Parameters

Name Description

Journal The Journal component that changes the state of the Task

Quest The Quest asset reference

Task The Task identifier from the Quest

Wait to Complete Whether to wait until the Task finishes running its Instructions

908.3 Keywords

Mission Finish Finalize

Quests » Task Complete

Page 1365

909 Task Fail

909.1 Description

Fails the state of an active Task on a Journal component

909.2 Parameters

Name Description

Journal The Journal component that changes the state of the Task

Quest The Quest asset reference

Task The Task identifier from the Quest

Wait to Complete Whether to wait until the Task finishes running its Instructions

909.3 Keywords

Mission Stop Restart

Quests » Task Fail

Page 1366

910 Task Value

910.1 Description

Sets, Adds or Subtracts a value from a Task

910.2 Parameters

Name Description

Journal The Journal component that changes the state of the Task

Quest The Quest asset reference

Task The Task identifier from the Quest

910.3 Keywords

Mission Increment Change Add Set Progress

Quests » Task Value

Page 1367

V.III User Interface

Page 1368

911 User Interface

The Quests module comes with a collection of components designed to streamline the creation of UI windows and

elements.

All examples that come with the module have been created with them and are flexible to accommodate any type of

window.

911.1 Quest List UI

This is one of the most important components and allows to display a list of Quests in a list fashion.

The Journal field determines which component the quests are taken from.

The following fields act as filters to display those quests.

The Show dropdown allows to display only quests that are in a particular state. For example, display only those

that are complete and active.

The Show Hidden toggle determines whether hidden quests should be displayed or not.

The Hide Untracked determines if the quests that aren't tracked should be visible or not.

The Filter dropdown allows to define whether to only display those quests that are present in a Global or Local

List Variable. This is useful to display achievements or non-standard quests.

The Content field defines the Rect Transform where each prefab instance will be instantiated, for every visible

quest.

The Content value should contain an auto-layout component, such as Vertical Layout Group , Horizontal Layout

Group or Grid Layout Group .

Layout component

Page 1369

The Prefab is the prefab instantiated inside the Content. It must contain a Quest UI component, which is

automatically configured by its parent.

911.2 Quest UI

This component is used in tandem with the Quest List UI to display a list of quests based on a set of rules and

filters.

The Title, Description, Color and Sprite fields are all optional and reference the indexed quest's homonymous values.

The Style Graphics section contains a collection of color codes to change the graphics based on different

conditions, such as whether a quest is Active, Inactive, Completed, Tracked, etc...

The Active Elements section defines a set of optional game objects that are activated/deactivated according to

different conditions.

Page 1370

It is common to mark the currently tracked quest with an icon or a different color. You can do this by selecting a game

object that contains a bookmark image, and drag and drop this element onto the Active if Tracking field.

This will deactivate the bookmark if the quest is not being tracked, and activate it otherwise.

The Interactive elements allow to define different types of interactions performed by the player.

For example, the Button Track field instructs a button to toggle the tracking state of the quest when clicked.

The Select Quest field allows to define a selection element as a button to select this particular quest.

More information about selecting quests and tasks below at the Selection UI section.

The Show and Show Hidden fields work exactly like the ones from Quest List UI but instead of quests, it refers to

tasks.

The Tasks Content and the Task Prefab are two optional fields that allow to define a place where to list the tasks of

this quest based on the previous filters.

Just like the Quest List UI component requires a prefab with a Quest UI component to configure, the latter requires a

prefab with a Task UI component.

911.3 Task UI

This component is very similar to Quest UI but instead of working with quests, it does work with tasks.

Show a Tracking Bookmark

More about Selections

Task UI required

Page 1371

As seen in the upper screenshot, most fields are exactly the same, and only a handful differ.

911.4 Selection UI

Upon selecting a quest, any Quests UI component with the Selection keyword will be automatically updated.

The components affected are:

Selected Quest UI

Selected Task UI

Both components have the exact same interface as Quest UI and Task UI respectively. But instead of targeting a

specific quest or task, they target the currently selected one, and automatically change upon receiving any change or

selecting a new one.

911.5 Points of Interest UI

Page 1372

The points of interest UI components are all related to the highlighting and location of specific Tasks and scene

objects around the scene.

For example, displaying a minimap where dots appear around a certain radius, or floating indicators as an overlay

over the camera.

911.5.1 Minimap UI

This component is used to display a rectangle and displays nearby points of interest within a certain radius.

Each Prefab field must contain a Minimap Item UI component, which is configured by this component.

The radius of the minimap can be changed at runtime, and can be increased when the player goes at a high speed, or

even as an unlockable skill that allows to view further away.

911.5.2 Compass UI

The Compass UI is a thin line that usually appears at the top of the screen, and displays the direction of points of

interest from the camera's point of view.

Changing Radius

Page 1373

The Character field determines the origin of the compass, and the Camera field the forward direction to be

considered.

Each Prefab field must contain a Compass Item UI component, which is automatically configured by this

component.

911.5.3 Indicators UI

The Indicators UI component displays floating images on top of the interface that shows the exact position of the

point of interest.

The Keep in Bounds field determines whether indicators should stay at the edge of the screen when the world space

instance is off-screen.

Each Prefab field must contain a Indicator Item UI component, which is automatically configured by this component.

Page 1374

V.IV Releases

Page 1375

912 Releases

912.1 2.3.9

Enhances

Editor: Support for Unity 6

Fixes

Editor: Removed obsolete UI Toolkit APIs

Hotspot: Exception when loading a saved game

Minimap UI: Null reference when loading a saved game

Compass UI: Null reference when loading a saved game

912.2 2.3.8

Fixes

UI: Indicators incorrect cycle-through

UI: Components run after all scene changes

912.3 2.3.7

(Latest)

Released October 18, 2024

Released February 23, 2024

Page 1376

This version breaks compatibility with previous versions and will only work with Game Creator 2.13.43 or higher.

Changes

Tasks: Better performance on Task property checks

Internal: Support for Core 2.13.42 version

Fixes

Quests: Destruction of Events with same Task ID

Condition: Group all Complete with latest core version

Condition: Group any Complete with latest core version

912.4 2.2.6

Fixes

Quests: Destruction of Events with same Task ID

Condition: Group all Complete with latest core version

Condition: Group any Complete with latest core version

912.5 2.2.5

Fixes

Variables: Quest type initialized in correct phase

912.6 2.2.4

Released October 31, 2023

Released August 29, 2023

Released June 13, 2023

Page 1377

New

Hotspots: Allow to define a fade in/out distance

Compass: Display distance with units

Compass: Fade in/out based on distance/direction

Minimap: Fade in/out based on distance

Indicators: Fade in/out based on distance

Property: Get Quest/Task Sprite

Property: Get Quest/Task Color

Settings: Displays current and update version

Changes

Signature format from Core 2.9.34

912.7 2.1.3

New

Points of Interest icon

Points of Interest now use Layers

Changes

Copy-Runner with less memory footprint

Fixes

Hotspot: Error when deleting Point of Interest

912.8 2.0.2

Released March 24, 2023

Released November 8, 2022

Page 1378

New

Trigger: On Task Value Change

Enhances

Editor: Quests remembers last selection

Fixes

Indicators: Wrong position when off-screen

912.9 2.0.1

New

First release

Released September 22, 2022

Released September 15, 2022

Page 1379

VI. Behavior

Page 1380

913 Behavior

The Behavior module allows to easily create and manage all your game's intelligent agents using a wide variety of

industry-standard tools:

State Machines

Behavior Trees

GOAP

Utility AI

Choosing one or another is a matter of preference and what makes more sense. It's a the right tool for the job kind-of

situation where there's not one definitive answer.

This documentation goes over them in detail from the most basic to the most complex systems.

Get Behavior

The Behavior module is an extension of Game Creator 2 and won't work without it

913.1 The Processor

Requirements

https://gamecreator.link/behavior
https://gamecreator.link/core

Page 1381

The Processor component is responsible for executing the logic of any of the aforementioned AI systems and can

be added to any game object in the scene, not just characters.

This component has a Graph field which accepts a State Machine, Behavior Tree, Action Plan or Utility Board graph

asset.

The Loop option determines whether the graph should be ran once or start over when it finishes executing.

The Update option determines whether the graph is executed every frame, manually via a script or at a custom

interval, which can be specified using a dynamic property.

Whenever a graph is added it collects all the Blackboard parameters and displays them as fields, which can be

dragged and dropped or set via visual scripting.

If we create a parameter called my-target on a Blackboard and assign this graph onto a Processor component, it will

display like in the screenshot below so its value can be assigned.

Parameters can be changed at runtime but a Processor's graph cannot be changed when in play-mode.

Display using a Parameter

Runtime Assignment

Page 1382

913.2 The Graph

All AI systems included in the Behavior module use a similar graph window with some common elements.

The top toolbar's left side contains a button that allows to focus on the currently selected element(s) on the view as

well as toggle the grid-mode. On the right side there's a collection of toggles that allow to show and hide other

sections of the window.

The bottom toolbar tracks which graphs have been opened so you can quickly go back to editing a parent graph.

The breadcrumb toolbar will automatically be displayed whenever you edit a sub-graph asset from a parent graph

asset.

913.2.1 The Blackboard

It's a collection of parameters with a name and a type that allow to interface between the agent running the AI

system and the graph itself.

Automatic display

Page 1383

Let's say we have an AI system that requires guards to patrol an area, each having their own route. We can create a

Blackboard entry called patrol-route and change its type to Game Object. By doing so, every guard that uses this AI

system will have a Patrol Route field that can be used to define its individual route.

To create a new entry simply type in the name and press Enter or click the + button.

By default a parameter doesn't have any type and thus won't appear in the Processor component. To change its type

click on the icon and select it from the dropdown.

After creating or editing a parameter of a Blackboard you'll need to refresh the Processors using this graph so the

parameters are re-sync.

913.2.2 Inspector

The Inspector panel allows to edit any nodes created inside the graph.

To edit a node simply select it and open the Inspector panel if it isn't already. Each node type will have its own

configuration options.

Patrolling

Page 1384

913.3 Parameters

After assigning an AI system to a Processor component it will display all available parameters from the Blackboard

at the bottom of the component.

These values can be set by dragging and dropping values from the scene or the project panel or using Game

Creator's Visual Scripting.

Page 1385

For example, let's say there's a parameter called energy and we can to subtract 1 unit from it every second. We can

create a Trigger component with an Interval value of 1 second, and use the Subtract Numbers instruction.

We assume it's the Player who has the Processor component, so we use it as the targeted game object and as the

name of the parameter we use energy .

Each Property dropdown will have a Behavior/ section with the corresponding parameter value.

Changing Parameters

Page 1386

914 Setup

Welcome to getting started with the Behavior module. In this section you'll learn how to install this module and get

started with the examples which it comes with.

914.1 Prepare your Project

Before installing the Behavior module, you'll need to either create a new Unity project or open an existing one.

It is important to note that Game Creator should be present before attempting to install any module.

914.2 Install the Behavior module

If you haven't purchased the Behavior module, head to the Asset Store product page and follow the steps to get a

copy of this module.

Once you have bought it, click on Window → Package Manager to reveal a window with all your available assets.

Type in the little search field the name of this package and it will prompt you to download and install the latest stable

version. Follow the steps and wait till Unity finishes compiling your project.

914.3 Examples

We highly recommend checking the examples that come with the Behavior module. To install them, click on the

Game Creator dropdown from the top toolbar and then the Install option.

The Installer window will appear and you'll be able to manage all examples and template assets you have in your

project.

The Behavior module comes with four different AI systems, and each one has its own demos. If you're new to AI, we

recommend starting in the following order, which is from the most basic to the most complex system.

State Machine: A very simple example of a patrolling guard using a finite state machine.

Behavior Tree: A behavior tree example of a patrolling guard playing hide and seek with the player

GOAP: An example using goal-oriented action planning where characters work with each other to pick branches

and keep a fire.

Utility AI: An example that uses a needs-based AI system where characters go in a dance club, dance, drink and

go home when they are tired.

Game Creator

Page 1387

Once you have the examples installed, click on the Select button or navigate to each one (for example

Plugins/GameCreator/Installs/Behavior.StateMachine/).

Page 1388

VI.I State Machines

Page 1389

915 State Machines

State Machines (also known as Finite State Machines or FSM) are the most basic form of AI.

As its name implies, an entity can be in just one state at a time and can only transition to another state which is

linked to the current one.

For example, a very simple State Machine could define the behavior of a guard. We could define two states:

Patrolling

Attacking the Player

The guard would start in the Patrolling state and only transition to the Attacking Player state if the player is in sight.

The Nodes section details all available node types.

The Logic page details how a State Machine works and how it's executed.

Simple FSM

Page 1390

916 Nodes

There are 4 different node types and they are created by right clicking anywhere on the graph, apart from the Enter

and Exit ones:

The Enter node is unique and determines which State will be the first one when starting to run the graph.

The Exit node is optional and allows the State Machine to finish running. Finishing running allows a State

Machine graph to be used as a subgraph of another AI tool so it has a beginning and an end.

916.1 State

The State nodes are the backbone of a State Machine and is where the magic happens.

The State contains a Name field that allows giving the node a name. This has no effect on the execution and is just

for information purposes.

The Conditions list determines whether this State can be transitioned to from another State with an edge pointing at

this. If the conditions are not successful this State won't be transitioned to.

The Check field accepts two options:

Every Cycle means that when this node is being executed, it will wait till its On Update instructions are completed

before checking whether it can transition to another node.

Page 1391

Every Frame means that when this node is being executed, it will check every frame if it can transition to another

node.

It is tempting to check every frame whether the state should transition to another one. However, checking Conditions

comes with a (very small) performance overhead. We recommend using Every Cycle when possible, so Conditions are

called less frequently.

The On Enter instructions are called whenever this node starts being executed because of a transition.

The On Exit instructions are called whenever this node finishes executing and transitions to another node.

The On Update instructions are called every frame while the node is being executed, and will restart again

automatically if the node is still being executed after finishing running the instructions.

It is important to node that the On Update instructions can be interrupted at any moment because of a transition. It's

better to add the initialization instructions on the On Enter and the post-run instructions on the On Exit, which are

guaranteed to be executed from start to finish.

916.2 Conditions

Conditions serve as a gate to move from one state to another. If the conditions return false when attempting to

switch states, the transition won't happen.

You might be wondering why there's a Conditions node when a State already has a Conditions list that do exactly the

same thing.

This is because you might have multiple States that require the same Conditions and funnel them to a single output

State node. In order to not repeating the same Conditions list on all States you can relay them to a single Conditions

entry point.

916.3 Sub Graphs

Sub Graph nodes allow to encapsulate another graph as if it were a State.

Default to Every Cycle

Canceling On Update

Why Conditions?

Page 1392

It is important to node that a Sub Graph accepts any kind of graph, not just State Machine graphs. You can, for

example, execute a Behavior Tree as a State.

916.4 Elbows

Elbows don't do anything and just allow to improve the readability of graphs by creating corners.

Their shape is determined by the direction after dragging and dropping an edge from another node, but it can also be

changed again by selecting the Elbow node and changing the direction in the Inspector.

Any Graph

Page 1393

917 Logic

State Machines are one of the easiest AI tools to understand and work very intuitively.

There is a starting State node which connects to other State(s) in a specific order. This order can be seen selecting a

State node and sorting the transitions at the bottom of the Inspector panel.

When a State is running, depending on the Check field value (which can be Every Cycle or Every Frame) it will check

whether it can transition to another State.

The order in which it tries to change to another node is from top to bottom, and will move as soon as it finds a new

suitable State that successfully passes its Conditions list.

If not a single connected State successfully passes the Conditions, the transition won't happen and the current State

will remain as the running one.

917.1 Example

Here's an example of a State Machine with two states: One that makes a character patrol around and one that tracks

the player when it's in its line of sight.

Page 1394

Upon seeing the player, the current Patrol state transitions to the Track Player state. If the guard loses sight of the

player, it transitions back to Patrol.

Page 1395

VI.II Behavior Trees

Page 1396

918 Behavior Trees

Behavior Trees are tree-like structures that stem from a single root node and are evaluated from top-to-bottom, and

following a left-to-right priority order, having the right one the highest priority.

Although State Machines are better suited for simple AI systems, they can quickly become messy with lots of

connection edges and hard to maintain. Behavior Trees are slightly more complex but offer much more flexibility and

are easier to read at a glance when having lots of nodes.

The Nodes section details all available node types.

The Logic page details how a Behavior Tree works and how it's executed.

Behavior Trees vs State Machines

Page 1397

919 Nodes

There are 4 types of nodes in Behavior Trees plus a special node called Entry, which is a single node that can't be

deleted and marks the root of the execution.

919.1 Tasks

A Task node is in charge of executing a specific set of Instructions when it runs.

It also contains a Conditions list, which is executed every time the graph is evaluated. If their value is not successful

and the Instructions list are running it will return a Failure.

While the Instructions are running, the Task node returns Running and upon finishing them it returns Success.

Page 1398

For example if a Task node is a direct child of the Entry node and it waits 1 second before finishing, running the graph

will put the whole graph under the Running state and change to Success after one second.

919.2 Composites

Composite nodes allow to branch and determine the order in which its child nodes are executed. There are multiple

types of composites, which can be chosen selecting the Composite node and clicking on the field in the Inspector.

A simple Task

Page 1399

919.2.1 Selector

The Selector composite executes the left-most child first. If the conditions return a Success the composite node

also returns Success.

However if the child returns Failure it attempts to execute the next child node.

If all nodes return Failure the composite also returns Failure.

The Selector composite type can be seen as an OR operator with their children.

919.2.2 Sequence

The Sequence composite executes the left-most child first and follows to the next if the execution of the previous

one is Success.

If the execution of a child node returns Failure the composite node will also return a Failure.

If all nodes return Success the composite also returns Success.

Selector as an OR

Page 1400

The Sequence composite type can be seen as an AND operator with their children.

919.2.3 Parallel

The Parallel composite, as its name implies, executes all of its children at the same time and it can configure when

the composite should be considered as Success by choosing the option from the field that appears in the

Inspector.

For example selecting All Successful will make the composite node return Success if and only if all of its children

have finished with a Success result. Otherwise it will return Failure.

919.2.4 Random Sequence

The Random Sequence composite works exactly the same way as the Sequence composite, except that the order in

which its children are evaluated is chosen at random right before the graph is evaluated.

919.2.5 Random Selector

The Random Selector composite works exactly the same way as the Selector composite, except that the order in

which its children are evaluated is chosen at random right before the graph is evaluated.

Sequence as an AND

All Successful

Page 1401

919.3 Decorators

Decorator nodes don't do anything but can transform the results of its child node. For example, the Invert node

returns Success or Failure depending on the value of its child node.

There are also multiple Decorator types of nodes

919.3.1 Fail

Returns Failure regardless of the result of its child.

919.3.2 Success

Returns Success regardless of the result of its child.

919.3.3 Running

Returns Running regardless of the result of its child.

919.3.4 Invert

Returns Success if its child node is Failure.

Returns Failure if its child node is Success.

Returns Running otherwise.

Page 1402

919.3.5 Repeat

Returns Running as long as the amount of times that its child has ran is below a specific number.

In other words, allows to execute its child a certain amount of times before returning its last result.

919.3.6 While Fail

Returns Running as long as its child is either Running or Failure.

Returns Failure otherwise.

919.3.7 While Success

Returns Running as long as its child is either Running or Success.

Returns Failure otherwise.

919.4 Sub Graph

A Sub Graph node allows to execute other Behavior Trees or even other types of AI systems, such as State

Machines.

This type of node behaves exactly the same as the Task node, except that instead of executing a collection of

Instructions it executes another AI graph.

Page 1403

920 Logic

A Behavior Tree always starts its execution from the root Entry node and trickles down following a top-to-bottom

fashion, looking for a single Task or Sub Graph node type.

Once one of these nodes has been found it executes them and the result of the execution bubbles up following the

same path. During this phase, Decorators might change the returning value.

The return value of a node (and therefore, the return value of a behavior tree) can be:

Success: The node has ran and successfully completed

Failure: The node has attempted to run but unsuccessfully completed

Running: The node is running and has not finished

Apart from these states, a node can also be in a ready state, which means it has yet to be executed.

A common misconception is that a Failure state is due to an error, which is not true. A Failure state could be due

to a character not being able to see the Player and moving on to checking another branch on a Selector node.

Every time a Behavior Tree is evaluated, whe whole tree structure is checked, taking into account the state of all

nodes, which are carried over. For example, a node that has been Success ran won't run again unless the tree

finishes with a Success or a Failure state.

Once a Behavior Tree has finished running and has a Success or Failure state it is considered as finished.

920.1 Ordering Nodes

Composite nodes can have multiple children branching from them. The order in which these are executed is denoted

by a numeric value at the top of their children, and it's automatically calculated when moving a node around.

Failure is useful

Page 1404

The left-most branching node will be the first one, and the last one will be the one found at the right-most position.

Page 1405

VI.III GOAP

Page 1406

921 GOAP

GOAP systems, also known as Goal Oriented Action Planning, are an AI system that automatically builds Plans

based on a list of Requisites and Effects that affects the agent's Beliefs.

The Goal of a GOAP system is to build Plan that changes the current Beliefs into one that satisfies a specific

Requisite.

Plan: A sequence of nodes executed in order to achieve a goal.

Beliefs: The current knowledge if the agent about the state of the world.

Requisites: A collection of boolean conditions that need to be satisfied to run a node.

Effects: A collection of changes that occur after executing a node.

Page 1407

The best analogy to this AI system is by comparing it to the Domino game. Each piece has a number of dots on one

side (which would be the Requisites) and a number of dots on the other side (Effects).

The Beliefs would be current number of dots required after placing a piece next to another one, and the Plan the

sequence of pieces placed in order.

The beauty of GOAP is that you can add as many nodes as you want without drawing connections between them

and the AI system will come up with the best plan possible. This has the drawback (or an advantage) that it may

come up with a plan that isn't foreseen by the game designer.

If there are multiple possible Plans the AI system will always prioritize the one that has the lowest overall Cost.

Let's say we have the following Action Plan and we ask it to build a Plan that satisfies the Goal: be-in-hotel .

There are two nodes, both of which have zero Requisites but both have an Effect:

The first one satisfies be-in-hotel

The second one satisfies be-in-restaurant .

If we ask the Action Plan to build us a Plan it would give us the first node, because running it satisfies the Goal be-in-

restaurant .

Similar to Domino

Simple Example

Page 1408

Let's imagine we now have the same case scenario, but in order to enter the Hotel we need to walk through the

Restaurant. This can be represented by adding the Requisite be-in-restaurant on the first node.

If we ask the AI system to build us a plan, it will quickly realize the plan can't be made of a single node, because it

requires be-in-restaurant to be satisfied. However, the second node satisfies this condition, and thus it will give us

the Plan sequence: Task 2 → Task 1

921.1 Thoughts

Beliefs are the agent's local knowledge about the world state at any given time, which can be transformed applying

Effects in order to reach a goal.

By default when an Action Plan attempts to build a Plan it starts with a blank slate of Beliefs. However we can

change that by giving it some default values whenever the plan starts being calculated.

A more complex Example

Page 1409

To do so, select the Action Plan asset from the Project Panel and click on the Add Thought button. Thoughts are the

initial values of an agent's Beliefs.

Page 1410

For example, we could have the initial Belief (or Thought) of whether the agent can see the player or not. To do so we

can use the Visual Scripting boolean option of a Condition and check whether there's an obstacle between the Player

and the Self (the agent itself).

I am thinking whether I see the Player or not

Page 1411

922 Nodes

GOAP has two types of nodes:

Tasks

Sub Graphs

Both of them accept a Requisites node on the left and an Effects node on the right.

922.1 Tasks

The Task node is the main node of a GOAP AI system.

It contains a Name that helps identify what this node does. This has no effect at runtime.

The Cost is a numeric value that determines how difficult it is to run this node. When coming up with a plan, the AI

system will pick the plan with the least cost value, adding up all costs of all nodes in each plan and comparing the

resulting value.

Conditions determine whether this node can be executed or not.

It is extremely important to note that Conditions are not the same as Beliefs. Conditions have no effect when coming

up with a plan and will only be evaluated when executing a plan, and cancel the plan if they evaluate to False.

It's highly recommended using Beliefs instead of Conditions unless you want to abort your plans mid-way through. For

example, a plan that approaches a character and attacks it, an aborting Condition could be checking if the character is

already dead when reaching it.

The On Execute instructions are where the bulk of the logic happens. A node will be considered finished after all its

instructions have been executed in order.

Conditions are not Beliefs

Page 1412

922.2 Sub Graph

The Sub Graph node works exactly the same way as a Task node does, but instead of executing instructions, it runs

another AI graph system, such as a State Machine or a Behavior Tree.

922.3 Requisites and Effects

The Requisites and Effects nodes are exactly the same, but the first one links to a Task or Sub Graph node from their

left side, and the former links to them on the right side.

There can be any number of Beliefs attached to each one of these nodes, and it can check whether the Belief is True

or False.

A Belief that is marked as False means the belief is not present, which is the default value when coming up with a plan

(unless the Thoughts list states otherwise).

A False Belief

Page 1413

923 Logic

A GOAP AI system doesn't do anything by itself. It requires one or multiple Goals and come up with a plan to solve

them and pick the most beneficial.

923.1 Setting up Goals

The instruction Add Goal allows to add a new one to a specific Processor component and Action Plan.

The Action Plan asset must be specified because the AI system might contain multiple Action Plan assets running as

sub graphs.

The Name field determines the Belief that will be required to satisfy (meaning it evaluates to True) in order to

consider the Goal as completed.

The Weight is a value that is multiplied to the total cost when coming up with a plan that resolves this goal. This

allows to prioritize some goals higher than others.

Specify Action Plan

Page 1414

Let's say we have two goals: Stay-Alive and Kill-Enemies and the AI system comes up with a plan for each with the

following total costs:

Stay-Alive with a total Cost of 5

Kill-Enemies with a total Cost of 3

In this case, because killing enemies has a lower cost, it would be picked up over staying alive. However this doesn't

make sense, because a character should focus on self-preservation first.

In this case, we can give the Stay-Alive goal a Weight of 0.5, which is a coefficient that multiplies the total cost by

this value, yielding the following new results:

Stay-Alive with a total Cost of (5 * 0.5) = 2.5

Kill-Enemies with a total Cost of (3 * 1) = 3

Now staying alive will be prioritized unless killing an enemy comes at a very small cost. Note that we could have also

doubled the weight of the killing enemies goal instead and it would result still work.

Just like adding goals, to remove a Goal use the Remove Goal instruction.

923.2 Planning

Once an Action Plan has one or more Goals it can come up with a plan, which is only done if there's not an ongoing

plan being executed.

The GOAP algorithm starts coming up with a plan for each Goal, and if there are multiple plans for the same goal,

stores the one with the lowest cost.

Goal Priorities

Page 1415

Once it has zero or one plan for each Goal it multiplies each one by their Weight value and picks the one with the

lowest cost. After than it starts executing the chosen plan until it finishes or is aborted by a Condition.

Page 1416

VI.IV Utility AI

Page 1417

924 Utility AI

Utility AI, also known as Needs-Based AI, is a behavioral artificial intelligence technique that defines a collection of

needs that have a necessity curve assigned to them and a Score value that can grow or decrease over time.

This AI technique is mostly suited for organic simulation games, such as The Sims.

At any point the need task to use is determined by comparing all Scores and applying the easing curve to it. The need

task with the highest resulting value will be picked and executed.

Let's say we have an Utility Board with just two needs, with very different curves:

Cook some Rice: The need to cook and eat grows over time, as the hunger increases.

Call a Friend: The need to call a friend decreases as the socialization value is met.

Note that the Call a Friend curve slightly increases a bit at the end. This is because once a character is socializing, it

keeps wanting to socialize, unlike with hunger, where once a human is full, it doesn't want to eat anymore.

If we were to execute this graph, if the hunger level was high it would likely pick the Cook some Rice task. However if

the socialization needs are very low it would likely pick the option to Call a Friend.

Curves allow to tweak the resulting value and model different responses based on a set of dynamic values that

change over time.

Type of Game

Two Needs

Page 1418

Mark Brown from Game Maker's Toolkit put up a very nice and rounded video covering how the AI of The Sims work. It's

filled with good ideas and high-level knowledge that designers can use to get started.

Utility AI pairs very well with other AI systems, such as Behavior Trees or GOAP. Each need node can contain other sub

graphs from other systems that delegate the complexity of executing the action that fulfills the need.

Game Maker's Toolkit on Utility AI

Pair with other AI systems

https://www.youtube.com/watch?v=9gf2MT-IOsg
https://www.youtube.com/watch?v=9gf2MT-IOsg

Page 1419

925 Nodes

Because Utility AI systems don't have any connections, there are just two possible types of nodes. Both of them do

the exact same thing but one has the logic embedded on them and the other one delegates it to another AI system,

such as a Behavior Tree, a GOAP, a State Machine or even another Utility AI system.

925.1 Tasks

The Task node has the logic of the need embedded on itself and is suitable for basic interactions, such as playing a

guitar.

The top part of the node contains a Name field which doesn't have any effect on the execution and is used to easily

identify it across all other nodes.

The Score section determines the easing Curve as well as the value used as input on the curve.

Page 1420

By default the bounds of the value range from 0 to 1, meaning that the curve's left-most position is zero and the right-

most is 1.

However if your game requires negative values or another range of values, you can modify the minimum and maximum

value by selecting the Utility Board asset on the Project Panel and changing the corresponding fields.

Bear in mind that the curve will always be constrained by 0 an 1, but the resulting value will be transformed to fit the

limits defined in the Minimum and Maximum fields.

Curves allow to transform the input Value into something that's usable. Here are some common use-case scenarios:

925.1.1 Linear Curve

The bounds of the Value

Page 1421

The most basic curve is the linear one, which takes the input Value and returns it as-is.

925.1.2 Inverse Linear Curve

The inverse linear curve reverses the value given, meaning that the resulting value decreases as the input value

increases, and vice-versa.

925.1.3 Easing Curve

Page 1422

The smooth easing curve is similar to the linear curve because it grows as the input value grows. However the

growth is much more visible as it approaches the end of the range.

925.1.4 Belly Curve

The belly curve (aka Bell curve or Gauss curve) is a very interesting one in which the growth happens in the middle

but decreases at the edges. This is usually used for low-priority tasks that are executed out of boredom, such as

scratching one's head.

Page 1423

The Conditions field allows to determine whether this need is valid and can be executed. If the conditions can't be

satisfied, the node will not be taken into account.

The On Execute instructions run as soon as the need node starts executing. After it finishes, the task is considered

to have finished.

Because some tasks might exit early due to unforeseen events, such as attempting to play a guitar that no longer

exists, the On Exit instructions are executed after finishing running a need. These instructions are guaranteed to be

called from start to finish and can be used to finalize the execution and restore the state of the agent back to before

it started.

925.2 Sub Graph

The Sub Graph node works exactly the same way as the Task one, but instead of executing some On Execute and On

Exit instructions, it delegates the responsibility of running the need node to another AI system, such as a Behavior

Tree, a State Machine, an Action Plan or even another Utility Board.

Page 1424

926 Logic

When an Utility Board is executed it starts by gathering all Task and Sub Graph nodes.

It then gets their different Value values and applies them to their corresponding Need Curve, which returns a value

constrained between the Minimum and Maximum value defined in the Utility Board asset.

Once their Score value is calculated, it compares all values and picks the one with the highest score and starts

running it.

An Utility Board will not recalculate a new need node unless the one currently being executed finishes. This means that

when a need task cannot be completed, it should either early exit or abort itself.

Wait to finish

Page 1425

When entering Play-Mode and selecting an agent that has a Processor component will display real-time information

about the current execution. In the screenshot above the title of each node shows the resulting value of applying the

Value onto the Curve:

Go Home has a value of 0.072

Drink has a value of 6.48

Dance has a value of 9.856

Thus the node chosen to execute the AI system is Dance because has the highest score value.

Page 1426

VI.V Visual Scripting

Page 1427

927 Visual Scripting

The Behavior module symbiotically works with Game Creator and the rest of its modules using its visual scripting

tools.

Instructions

Conditions

Events

Each scripting node allows other modules to use any Behavior feature.

Page 1428

VI.V.I Conditions

Page 1429

928 Conditions

928.1 Sub Categories

Behavior

Page 1430

VI.V.I.I Behavior

Page 1431

929 Behavior

929.1 Conditions

Is Processor Running

Page 1432

930 Is Processor Running

930.1 Description

Returns true if the Processor is in a Running state

930.2 Parameters

Name Description

Processor The reference to the Processor component

930.3 Keywords

AI Behavior Tree State Machine Utility Need Goal Plan GOAP

Behavior » Is Processor Running

Page 1433

VI.V.II Events

Page 1434

931 Events

931.1 Sub Categories

Behavior

Page 1435

VI.V.II.I Behavior

Page 1436

932 Behavior

932.1 Events

On Processor Finish

On Processor Start

Page 1437

933 On Processor Finish

933.1 Description

Executed when the Processor finishes its current execution

933.2 Keywords

AI Behavior Tree State Machine Utility Need Goal Plan GOAP

Behavior » On Processor Finish

Page 1438

934 On Processor Start

934.1 Description

Executed when the Processor starts a new execution

934.2 Keywords

AI Behavior Tree State Machine Utility Need Goal Plan GOAP

Behavior » On Processor Start

Page 1439

VI.V.III Instructions

Page 1440

935 Instructions

935.1 Sub Categories

Behavior

Page 1441

VI.V.III.I Behavior

Page 1442

936 Behavior

936.1 Sub Categories

Action Plan

936.2 Instructions

Processor Update

Page 1443

937 Processor Update

937.1 Description

Manually executes a new iteration on a Processor

937.2 Parameters

Name Description

Processor The targeted Processor component

937.3 Keywords

AI Behavior Tree State Machine Utility Need Goal Plan GOAP

Behavior » Processor Update

Page 1444

VI.V.III.I.I ACTION PLAN

Page 1445

938 Action Plan

938.1 Instructions

Add Goal

Remove Goal

Page 1446

939 Add Goal

939.1 Description

Adds a new Goal to the specified Action Plan

939.2 Parameters

Name Description

Processor The targeted Processor component

Action Plan The Action Plan asset to set the goal

Name Name identifier of the goal

Weight The weight the goal has when calculating the plan

939.3 Keywords

AI Action Goal Plan GOAP

Behavior » Action Plan » Add Goal

Page 1447

940 Remove Goal

940.1 Description

Removes an existing Goal from the specified Action Plan

940.2 Parameters

Name Description

Processor The targeted Processor component

Action Plan The Action Plan asset to remove the goal

Name Name identifier of the goal

Weight The weight the goal has when calculating the plan

940.3 Keywords

AI Action Goal Plan GOAP

Behavior » Action Plan » Remove Goal

Page 1448

VI.VI Releases

Page 1449

941 Releases

941.1 2.1.6

Changes

Editor: Support for Unity 6

Fixes

Graph: Removed obsolete UI Toolkit APIs

941.2 2.1.5

Enhances

Nodes: Display Breakpoint and Disabled Instructions

Nodes: Display Breakpoint and Disabled Conditions

Fixes

Behavior Tree: Composite selector incorrect conditions

941.3 2.1.4

Fixes

Editor: Exiting play-mode remembers open graphs

941.4 2.1.3

(Latest)

Released October 18, 2024

Released July 30, 2024

Released February 23, 2024

Page 1450

This version breaks compatibility with previous versions and will only work with Game Creator 2.13.43 or higher.

Changes

Demos: Examples support latest core version

Internal: Support for Core 2.13.42 version

941.5 2.0.2

Enhances

UX: Paste from shortcut places node nearby

UX: Creating a node automatically selects it

Fixes

Graph: Duplicating special nodes

Example: Removed State Machine unused object

941.6 2.0.1

New

First release

Released October 31, 2023

Released August 31, 2023

Released August 30, 2023

Page 1451

VII. Perception

Page 1452

942 Perception

Video game characters can read their world through a wide variety of virtual sensors, such as sight, hearing and

smell. These sensors have parametrized values that try to emulate the ones from the real world.

The Perception module aims to help non-playable characters understand what happens around them and organically

react to different stimulus.

Get Perception

The Perception module is an extension of Game Creator 2 and won't work without it

The Perception component can be attached to any game object in order to make it aware of their surroundings. This

component admits four different sensors that help read the world around them:

Sight: Detects other objects within a vision cone and its peripheral vision

Hearing: Detects noises above a certain threshold

Smell: Tracks scent(s) and the direction where they come from

Feel: A sixth sense that detects other objects by proximity

Using the sensors above, the Perception component can track a wide variety of scene objects and keeps a log of

how aware it is of them.

Requirements

https://gamecreator.link/perception
https://gamecreator.link/core

Page 1453

Moreover the Perception module comes with an Evidence system that allows agents to notice changes made to the

world by other characters.

Page 1454

943 Setup

Welcome to getting started with the Perception module. In this section you'll learn how to install this module and get

started with the examples which it comes with.

943.1 Prepare your Project

Before installing the Perception module, you'll need to either create a new Unity project or open an existing one.

It is important to note that Game Creator should be present before attempting to install any module.

943.2 Install the Perception module

If you haven't purchased the Perception module, head to the Asset Store product page and follow the steps to get a

copy of this module.

Once you have bought it, click on Window → Package Manager to reveal a window with all your available assets.

Type in the little search field the name of this package and it will prompt you to download and install the latest stable

version. Follow the steps and wait till Unity finishes compiling your project.

943.3 Examples

We highly recommend checking the examples that come with the Perception module. To install them, click on the

Game Creator dropdown from the top toolbar and then the Install option.

The Installer window will appear and you'll be able to manage all examples and template assets you have in your

project.

Examples: A collection of scenes with different use-case scenarios.

UI: A bundle of common user interface elements, such as enemy awareness, luminance, smell and hearing.

Game Creator

Page 1455

The Examples requires all the skins in order to work.

Clicking on the Examples install button will install all dependencies automatically.

Once you have the examples installed, click on the Select button or navigate to

Plugins/GameCreator/Installs/Perception.Examples/ .

Dependencies

Page 1456

Page 1457

944 Awareness

Even though there are multiple ways to detect characters and objects, the ultimate goal is to determine whether an

object A is aware of another B or not.

The Awareness is a value that aims to simplify how an agent communicates and reacts with other game objects.

Let's say we have an enemy agent that can detect the player using Sight, Hearing and Smell. It would be very difficult to

react when the enemy detects the player if we didn't have the Awareness meter, because we would need to control

what happens when any of the possible combination of all three sensors detect or not the player.

For example, what would happen if the enemy sees the player? What happens if the enemy can see the player, but also

hear it? What if it hears it but can't see it? Any of these permutations increase the complexity of building a robust

detection system.

In this module the Awareness is a unique value stored in the Perception component that tracks how aware the agent

is of each tracked object. This value ranges between 0 (not aware at all) and 1 (fully aware of the target).

The Perception component has a list of Sensors that feed the awareness value independently from each other. By

doing so, one can create an enemy AI that reacts according to how aware it is of the player, instead of relying on

information from each of the sensors.

Example of Awareness

Page 1458

The Awareness can be read as a value between 0 and 1, but in some cases, it may be easier to give a name to

awareness ranges. The Perception module provides 4 ranges:

None: The Awareness value is between 0 and 0.05

Suspicious: The Awareness value is between 0.05 and 0.5

Alert: The Awareness value is between 0.5 and 0.95

Aware: The Awareness value is between 0.95 and 1

944.1 Tracking Objects

The Perception component does not automatically track all scene objects. The user can define which objects are

tracked (or untracked) at any moment using the Track Awareness and Untrack Awareness instructions respectively.

The most common use-case is for an enemy to track the Player. To do so, simply add a Trigger with the On Start event

with the following Track Awareness instruction:

Once an object is being tracked it will appear at the bottom of the Perception component during play-mode along

with a progress bar. This is useful for debugging how aware the component is of the tracked game object.

Awareness as Stages

Tracking the Player

Page 1459

944.2 Increasing Awareness

One a Perception component tracks a game object there are multiple ways to increase its Awareness. The easiest

one is using the Increase Awareness instruction, which apart from incrementing the awareness, it also allows to cap

its increment up to a certain maximum.

Page 1460

The Max Level field allows to determine a maximum level in which the Awareness can increase. This is useful, for

example, when the player breaks a crystal glass.

In this case, the enemy will increase its awareness, but even if the player breaks more glasses, the enemy will never

reach the point of highest awareness, until it has a clear line of sight.

The other way to increase Awareness is using the Sensors, where each one works differently.

944.3 Forgetting Awareness

A Perception component requires a rather frequent stream of stimulus in order to keep its awareness on tracked

game objects. The Perception component has the following fields that helps control how it behaves when stimulus

stop being received:

Forget Speed: The speed at which Awareness decreases over time.

Forget Delay: The minimum amount of seconds it takes without receiving any stimulus before the Awareness

starts decreasing.

The exception is when the Perception reaches the Aware stage. In this case, if the Can Forget field is disabled, the

Perception will never decrease its Awareness of the game object.

However if the Can Forget field is ticked, instead of the Forget Delay it will require the amount of seconds specified

in the Duration field in order to start decreasing the Awareness.

Max Level

Page 1461

The Aware stage can have a different amount of seconds in order to forget the specified game object because in most

games, an enemy being aware of the Player means entering combat mode.

When characters are in combat, the player is likely to seek cover, and enemies could easily lose sight of the player. To

avoid enemies being too forgetful it's a good practice to add a high amount of seconds before enemies start forgetting

the player was seen.

944.4 Relaying Awareness

Perceptions can also send Awareness information to other Perception components in order to make them appear

like they work as a team.

A common practice of an enemy spotting the player is to inform nearby guards that the player has been found, raising

their Awareness. This can be easily done using the Relay Awareness instruction, which transfers all Awareness

knowledge from one Perception component to another, without the second one losing any knowledge.

Why Aware stage is different

Inform when the Player is spotted

Page 1462

VII.I Sensors

Page 1463

945 Sensors

The Perception component can make use of different sensors which emulate real-world senses.

Sight: Use a vision cone.

Hearing: Hear noises made by other entities.

Smell: Detect and track scents emitted by entities.

Feel: Sense other entities by proximity.

Page 1464

946 Sight

The Sight is one of the most useful sensors of the Perception component and it allows to check whether there's a

line of sight between the agent and another tracked object.

946.1 Settings

The Update field determines whether the vision cone is updated every frame, at a specified interval, or manually

done (using a custom Instruction or a script). By default we recommend leaving it to Every Frame unless there are

performance reasons.

The Detection Speed determines how fast the Awareness value increases when the tracked object is in its line of

sight.

Note that it is possible that the detection speed during runtime is slower than Detection Speed. This is because this

field determines the maximum speed at which the Perception component will increase awareness, but there might be

factors, such as low light and distance, that dampens the detection speed.

The Layer Mask is a physics mask used during the ray-cast phase and allows to determine what is an obstacle

between the Perception component and the tracked object, and what is not.

Maximum Detection Speed

Page 1465

The Optics field references a humanoid or generic bone from the game object with the Perception component, and

it's the position where the eye should be. Characters will always ray-cast to the center of the tracked game object.

When tracking characters, such as the player, the position is also the hips.

Notice that by default, characters see the world from their hips. This is because it's easier to hide from enemies when

their eyes are at hip-level.

The Use Luminance checkbox determines whether light conditions affect the detection speed or not. Unless you're

making a stealth game, we recommend leaving the checkbox unticked, since it slightly increases performance.

If this field is ticked, two new fields will appear below:

Dim Threshold: The minimum amount of luminance required for the Perception component to barely see a

tracked object.

Lit Threshold: The maximum amount of luminance required for the Perception to detect tracked objects at full

speed.

Let's say we have a Perception component with:

Dim Threshold = 0.2

Lit Threshold = 0.5

This means that any tracked object will require to be illuminated with an intensity of at least 0.2 in order for this

Perception component to detect it. However the detection speed will be very slow, and will gradually increase until it's

illuminated with an intensity of 0.5. Higher light intensities won't further increase detection speed.

Thanks to the Dim and Lit thresholds it's very easy to make enemies wear night vision goggles. You can simply turn the

Dim Threshold all the way down to zero and Lit Threshold to something very small, like 0.1. This should be enough to

detect the player in poor light conditions.

For more information about setting up lights when tracking objects, see the Luminance page.

946.2 Primary & Peripheral

At the bottom of the Sight sensor has two expandable boxes called Primary and Peripheral which represent the

primary and peripheral vision cone.

Eyes on the hips

Example of Dim and Lit thresholds

Night Vision

Page 1466

The Primary cone is where the Perception can fully detect tracked objects. However if the tracked object is inside

the Peripheral cone the speed at which it is detect is reduced by proportionally.

This means that the further away it is from the Primary cone, the slower the detection speed will be.

Both boxes contain identical fields:

Angle: The angle extension in front of the Perception component.

Radius: How far the vision cone extends.

Height: The vertical size of the vision cone.

Page 1467

You can see in real-time a gizmo representing the Primary and Peripheral vision cones in the scene view.

The Peripheral values extend the Primary ones. That means that if the Primary Radius is 5 and Peripheral Radius is 2,

peripheral's radius is actually 5 + 2 = 7.

Peripheral extends Primary

Page 1468

947 Hearing

The Hearing sensor represents the ability of a Perception component to hear noises above a certain threshold.

947.1 Settings

The Use Obstruction field determines whether sound can be blocked by Obstruction components. Ticking this field

will reveal a layer mask that determines which Obstruction components are considered as such.

If your game is set in open spaces or you don't need noises to be blocked by nearby rooms you can untick the Use

Obstruction field. Enabling this option comes with a slight performance overhead.

More information about these components can be found in the Obstruction page.

The Min Intensity and Max Intensity fields determine the range in which noises can be heard. Lower and higher

noises will not be acknowledged by the Perception component.

It is known that dogs can hear higher pitched noises than human. You could model a situation where the player can use

high intensity noises that only dogs can hear in order to distract them, without alerting other guards.

Decay Time is the amount of seconds a noise takes to fade out. Although noises are emitted as a one-shot effect,

the hearing of a Perception components keeps hearing that noise due to the resonance inside a human's skull. This

is more commonly known as Tinnitus effect in high-pitched noises.

947.2 Emitting a Noise

In order to emit a Noise the instruction Emit Noise can be used.

Not using Obstructions

Using intensities

Page 1469

The Position field determines the origin of the noise emitted, while the Radius indicates how far it reaches.

The Intensity determines whether the noise stimulus can be heard by the Perception component or not. And the Tag

is a custom value that can be used when building the AI to react differently depending on its value.

We could conclude that when an enemy hears a whistle it will change into a suspicious mode and approach the origin

of the noise. However if it hears a gun shot it may turn into aware mode.

947.3 Reacting to Noises

The Perception component doesn't inherently increase its Awareness upon hearing a noise, unlike the sight sensor.

This is because each noise tag can mean something different.

To react to noises a Trigger must be used with the On Hear event. Upon hearing any or a specific noise, the resulting

reaction can be specified, like increasing the Awareness of the Perception component towards the player.

A whistle vs a gun shot

Page 1470

It is worth noting that noises can also be masked by the din or ambient noise. The din is a more advanced concept and

it is covered in depth in the Din section.

Din (Ambient Noise)

Page 1471

948 Smell

The Smell sensor works by emitting a Scent at a specific point with a tag. Emitting more scents links them together

creating a chain similar to a breadcrumb trail that Perception components can pick to react or follow.

948.1 Settings

The Update field allows to choose whether the Perception component updates its smell sensor every frame, at a

specific interval, or manually using a custom script.

If you are starting out we recommend leaving the update mode to Every Frame. Interval and Manual can be used to

improve performance at the expense of precision.

The Radius determines how far the Perception component can smell a scent. Increasing this value allows agents to

smell farther scents.

The Use Obstruction field allows scents to be blocked by Obstruction components.

If your game is set on on an open area or don't want scents to be blocked by Obstruction components, untick the Use

Obstruction checkbox. It will save some performance overhead.

The Min Intensity field allows to define a minimum threshold at which scents are caught. See the Emitting Scents

section for more information about how scents work.

948.2 Emitting Scents

Update every frame

Without Obstruction

Page 1472

Scents are one or more points in space connected by their lifetime value, identified by a tag name.

Each time a new Scent is emitted, it is connected to the previous scent with the same tag, allowing to traverse the

scent trail from the oldest to the newest point.

The instruction Emit Scent can be used to emit a new scent at a specific point.

The Source field is a game object emitting the scent and its position is equal to that game object's point in space.

The Tag field is a string that identifies the scent. If there already is one or more scents with the same tag, they will be

automatically connected forming a trail of breadcrumbs that other characters can track.

The Duration field specifies the time it takes to dispel the scent.

The Intensity field is a numeric value that indicates how strong the scent is when it starts.

Page 1473

Note that the Intensity of a scent fades over time, similar to how gas dispels in real-life. This means that a scent with

an intensity of 1 and a duration of 5 seconds will have an intensity of 0.5 after 2.5 seconds have passed.

948.3 Catching Scents

The Perception component doesn't inherently increase its Awareness upon smelling a scent, unlike the sight sensor.

This is because each scent tag can mean something different.

To react to scents the On Smell Trigger can be used, which is executed whenever the Perception component enters

a zone with a scent.

Once a Perception component catches a whiff of a scent it can increase the Awareness using the Increment

Awareness instruction or even follow the scent trail.

948.4 Following Scents

A character can query the current point in space of a specific scent, as well as the next scent point (if it exists), using

the Position property.

This allows characters to follow a scent trail by attempting to go to the next scent point from the one whiffed.

Intensity fades over time

Page 1474

For example you can use the Move Character To instruction with the Follow Scent option, which selects the next scent

point from the closest one, effectively making the character follow the scent like a trail of breadcrumbs.

Move To...

Page 1475

949 Feel

The Feel sensor works similar to sight sensor but it uses the entire space around the Perception component.

The Feel sensor is meant to be used as a sixth sense in which characters can feel another character being very close,

almost touching, the character.

However you can also tailor it to your own needs. For example you can increase the radius and change the update

mode to regular intervals and simulate a sonar.

949.1 Settings

The Update field determines when the sensor is updated, which can be either Every Frame, at a regular Interval or

manually from an external script.

If you are starting out we recommend leaving the update mode to Every Frame. Interval and Manual can be used to

improve performance at the expense of precision.

The Detection Speed is at which rate a tracked object will increase the Perception's Awareness when being within

the radius.

The Radius field determines how far the sixth sense reaches, and the Layer Mask allows to filter out (or not)

obstacles between the Perception component and the tracked object(s).

The Sixth Sense

Update every frame

Page 1476

When a tracked object is inside the detection radius of the Feel sensor it will automatically start increasing the

Awareness meter of the Perception component.

Automatic Awareness

Page 1477

950 Luminance

The Sight sensor of a Perception component has the option to Use Luminance in order to account for an object's

reflected light when determining whether it is visible or not, and how much should the Awareness increase based on

its intensity.

Unity uses the Light component to specify light entities, which can take different shapes (Spot lights, Directional

lights and Point lights) as well as affecting the scene during the light baking process or in real-time.

950.1 Component

The Perception module supports all these shapes and lighting modes through the use of the Luminance system,

which is a component attached to any light source which indicates that this specific light should affect how visible

an object is in the scene.

Page 1478

The Luminance component will automatically detect the type of light and shape.

As a general rule of thumb, all Light components should also have a Luminance component attached to them. However

you might also want some lights not to affect player's visibility.

For example, if the player puts on some night vision goggles, you could enable a spotlight in front of it with a green tint

that doesn't have any Luminance component attached to it. This will prevent this light from affecting visibility.

The Multiplier field allows to modify the luminance value compared to the Light's intensity.

For example, let's say our game is set in a very dark room and one of the light sources is a small lamp. But because it's

very dark, the intensity of the light must be increased, but we would like the Luminance value to stay low.

In that case we can use a 0.5 multiplier so that if our Light intensity is 2, the resulting luminance value is 2 * 0.5 = 1.

Luminance on Lights

Dim Light

Page 1479

The Layer Mask allows to pick which objects do affect luminance. It is important to note that luminance is

calculated based on colliders, not on general geometry. If an object (like a fence) doesn't have a collider, although

light will be blocked by the opposite side of the fence, the luminance value will still reach the other side.

It's advised to add colliders to every piece of geometry in the level so that both light and luminance result in similar

results.

If you have a glass door in your game, light will pass through it and hence luminance should lit objects behind it. In

order to achieve this, simply place the collider of the glass door in a Layer that isn't affected by the Luminance's Layer

Mask.

950.2 Environment Luminance

The Environmental Luminance can also be set using the Change Global Luminance instruction. This instruction

changes the minimum light intensity the scene has, even there are no lights in the scene.

This is useful if the Light Window has a bright environment light color or sky-box.

950.3 Checking Luminance

Once all Luminance components are set up the resulting Luminance value can be queried at any point in the scene

using the Luminance property, which is a decimal value that represents the intensity of the overall light hitting that

spot.

There is a UI component that allows to display UI information about the Luminance in real-time to the player. For more

information, visit the Luminance UI section.

Add colliders to geometry

Transparent geometry

UI

https://docs.unity3d.com/Manual/lighting-window.html

Page 1480

951 Camouflage

The Camouflage component can be attached to any game object in order to dampen their visibility when observed

by other Perception components.

The Sight Damping field is a coefficient that multiplies the resulting visibility value of a Perception component

tracking this game object.

Let's say an enemy is tracking the Player character and it's inside its primary vision cone. This means that the character

will fully see the character if the light conditions are sufficient. For the sake of this example, let's say there's a dim

global light with an intensity of 0.5, so the resulting visibility of the player is 0.5.

If the player has a Camouflage component with a Sight Damping value of 0.25, the resulting visibility of the player will

be 0.5 * 0.25 = 0.125. If the Dim threshold is a bigger number than the resulting visibility, the player will be invisible to

the enemy.

Because the Sight Damping value is a dynamic property, you have the flexibility to create a wide variety of game

mechanics.

You can bind the value to a Local Variable to turn on or off their invisibility skill.

You can also bind the property to a Stat to increase their stealth skill as the player levels up.

You can bind it to the player's movement, so that when it's standing still the player is less visible than when moving.

Camouflage Calculation

Dynamic Camouflage

Page 1481

952 Obstruction

Some Perception sensors can be partially or completely blocked by scene obstacles, like sound-proof rooms or

frozen-glass walls.

The Obstruction component allows to dampen the amount of Sight and Hearing of visual and audible stimulus

passing through the object.

The Obstruction component requires a Collider component in order to work.

The Noise Damping field defines a coefficient that multiplies the resulting noise intensity heard by a Perception

component when listening for a noise at the other side of one or multiple Obstruction components.

The Sight Damping does exactly the same for the Perception's sight sensor.

A Noise Damping of 0.5 means that any noise coming from the other side of an Obstruction component will be muffled

by half. If the Noise Damping is set to zero the noise is completely muffled.

Requires a Collider

Example

https://docs.unity3d.com/Manual/PhysicsSection.html

Page 1482

The Sight sensor already gets blocked by collider geometry. The Obstruction component should only be added if you

want to partially block objects at the other size. For example, for semi-transparent walls.

Blocking Sight

Page 1483

953 Din (Ambient Noise)

There is an exception to when a Perception will not hear a noise emitted, even though it's between the Min Intensity

and Max Intensity range, which is when the din (also commonly known as Ambient Noise) is loud enough to mask

the noise emitted.

Let's say we have an agent with a Perception component that can hear noises with an intensity between 0 and 1. If the

Player emits a noise with an intensity of 0.5, the agent should be able to hear the noise if it is within the noise radius.

However let's say there is a thunderclap at the same time, which temporally changes the din (or ambient noise) to 0.75.

In this case, the whistle won't be heard because the Perception component will be deaf to noises between 0 (Min

Intensity) and 0.75 (current din). However any noise above 0.75 and below 1 will be heard.

The scope of a din source can either be local or global.

953.0.1 Global Din

Global Din affects the entire scene equally and can be set using the Set Global Din instruction. A Duration can be

specified that determines the time it takes to change from the current value to the target one.

953.0.2 Local Din

The Local Din affects only a region of the scene and it is configured using the Din component.

Thunderclap vs Whistle

Page 1484

The Radius field determines how far the ambient noise reaches, fading out the intensity at the edges of the sphere.

The Roll off slider allows to change how slow or fast the intensity fades. Setting the slider in the middle means the

intensity fades out linearly, while moving the knot to the left will take longer for the intensity to fade the closer to the

edges the Perception component is.

It is recommended to leave the Roll off value at 6. Although in real life sound propagates logarithmically, players will

feel more comfortable knowing that the din intensity changes linearly the closer they are to the source of the ambient

noise.

The Use Obstruction field allows to use Obstruction components to block the ambient noise from affecting nearby

sound-proof rooms.

The Level field is the intensity at which the din is at its highest point, gradually fading out towards the perimeter of

the sphere.

To more consistently represent how sound and ambient noise affects the computed din, there is an Audio Source

box field at the bottom of the component. This optional field allows to play an audio clip at a volume equal to the

component's din.

This makes it much easier to synchronize the audio clips played as noise masks and the din values.

Linear when possible

Page 1485

954 Evidence

The Perception module comes with a unique Evidence system that allows scene agents to detect changes in

objects made by other characters (like the player) and react accordingly.

Let's say we are making a stealth game where the player is sneaking through a series of rooms. If the player leaves a

door open, guards may notice this change and react accordingly. For example, raising their awareness.

The Evidence component can be added to any game object.

The Tag field is a string that identifies the Evidence type.

You can have multiple Evidence components with the same Tag value. Discovering one of them will mark all of them as

already seen. This is very useful if you want guards to only notice evidence once.

For example, if the player leaves three doors open, a guard should only raise its awareness once and notice there's

someone around just once. Otherwise a guard might shout three times in a row the same line and look a bit too goofy.

The On Sight allows the Evidence to be seen by other agents.

The Emit Noise checkbox allows the Evidence to emit a noise when it is tampered, and allows other agents to notice

it using the Hearing sensor.

It is worth noting that when an Evidence emits a noise, it will also make use of the Tag field as the identifier of the

noises. Apart from noticing the Evidence agents can also react to the noise emitted just like any other noise, using the

On Hear Trigger.

What was that...?

Multiple Evidences with the same Tag

Noise with Tag

Page 1486

The Emit Scent allows the Evidence component to emit a scent identified by the Tag field that other agents can

catch when the component is tampered.

Just like with noise, the scent emitted by the Evidence component can be used just like any other scent. The On Smell

Trigger can catch its whiff identifying it by its Tag field.

954.1 Tampering

An Evidence does nothing by itself. Instead it must be Tampered in order for the Evidence to be noticeable by other

agents.

When entering Play-Mode you can select any Evidence component and a new field will appear at the bottom called Is

Tampered, which indicates the current value.

In order to Tamper or Reset an already tampered evidence you can use the Tamper Evidence instruction and Restore

Evidence instruction, respectively.

Scent with Tag

Debug Evidence at Runtime

Page 1487

Once an Evidence is tampered, it will start being noticeable by other Perception components.

954.2 Detection

The Trigger On Notice Evidence can be used to react when a tampered Evidence component is detected.

The On Notice Evidence component detects when a specific Perception component detects a new Evidence, which

can be optionally filtered by a specific Tag or not.

954.3 Relaying Knowledge

In order to make multiple Perception agents look like they work as a team, you can also relay Evidence knowledge

between them. This is done using the Relay Evidence instruction, which fills in the knowledge gaps of the targeted

agent.

When a Perception has new relayed Evidence knowledge transferred, it can also react using the On Relayed

Evidence Trigger.

Page 1488

Let's say we have two guards and one of them notices that a door has been opened. In that case, the first guard will

receive the On Notice Evidence trigger event, upon which it will update its internal knowledge about the current state of

Evidence components.

After the guard shouts something like We have company! Someone left a door open! it could use the Relay Evidence

instruction in order to communicate to nearby guards that they should be alert.

Nearby guards can use the Relayed Evidence Trigger in order to know that a new Evidence component has been

discovered by another guard nearby and raise their awareness level and shout something like Understood!.

Communication between Guards

Page 1489

VII.II Visual Scripting

Page 1490

955 Visual Scripting

The Perception module symbiotically works with Game Creator and the rest of its modules using its visual scripting

tools.

Instructions

Conditions

Events

Each scripting node allows other modules to use any Perception feature.

Page 1491

VII.II.I Conditions

Page 1492

956 Conditions

956.1 Sub Categories

Perception

Page 1493

VII.II.I.I Perception

Page 1494

957 Perception

957.1 Sub Categories

Evidence

Hear

See

Smell

957.2 Conditions

Compare Awareness

In Awareness Stage

Page 1495

958 Compare Awareness

958.1 Description

Compares the Awareness value with another value

958.2 Parameters

Name Description

Perception The Perception component

Target The Game Object checked

Value The comparison to the Awareness value

958.3 Keywords

Awareness Track See Alert Suspicious Aware

Perception » Compare Awareness

Page 1496

959 In Awareness Stage

959.1 Description

Returns true if the awareness of a target is in any of the specified stages

959.2 Parameters

Name Description

Perception The Perception component

Target The Game Object checked

Stage The stage(s) to check

959.3 Keywords

Awareness Track See Alert Suspicious Aware

Perception » In Awareness Stage

Page 1497

VII.II.I.I.I EVIDENCE

Page 1498

960 Evidence

960.1 Conditions

Is Evidence Tampered

Page 1499

961 Is Evidence Tampered

961.1 Description

Determines whether an Evidence game object has been tampered or not

961.2 Parameters

Name Description

Evidence The Evidence component

961.3 Keywords

Notice Change Tamper Modify Fiddle

Perception » Evidence » Is Evidence Tampered

Page 1500

VII.II.I.I.II HEAR

Page 1501

962 Hear

962.1 Conditions

Can Hear Noise

Hears Noise Tag

Page 1502

963 Can Hear Noise

963.1 Description

Checks whether the Perception component can hear a new Noise stimulus

963.2 Parameters

Name Description

Perception The Perception component

Position The position of the Noise stimulus

Radius The radius of the Noise stimulus

Intensity The intensity of the Noise stimulus

963.3 Keywords

Sound Noise Bell Intensity Stimulus

Perception » Hear » Can Hear Noise

Page 1503

964 Hears Noise Tag

964.1 Description

Checks whether the Perception component is hearing a Noise Tag

964.2 Parameters

Name Description

Perception The Perception component

Noise Tag The Noise Tag to check

Value The comparison to the noise value

964.3 Keywords

Sound Noise Tag Bell Intensity

Perception » Hear » Hears Noise Tag

Page 1504

VII.II.I.I.III SEE

Page 1505

965 See

965.1 Conditions

Can See

Compare Luminance At

Page 1506

966 Can See

966.1 Description

Returns true if object can be seen by the Perception component

966.2 Parameters

Name Description

Perception The Perception component

Target The Game Object checked

966.3 Keywords

See Sight Vision Detect

Perception » See » Can See

Page 1507

967 Compare Luminance At

967.1 Description

Compares the Luminance value with another value

967.2 Parameters

Name Description

Target The object reference that checks its Luminance

Value The comparison to the Luminance value

967.3 Keywords

Light Dim Lit Expose Sun

Perception » See » Compare Luminance At

Page 1508

VII.II.I.I.IV SMELL

Page 1509

968 Smell

968.1 Conditions

Can Smell Scent

Smells Scent Tag

Page 1510

969 Can Smell Scent

969.1 Description

Checks whether the Perception component can smell a new Scent stimulus

969.2 Parameters

Name Description

Perception The Perception component

Position The position of the Scent stimulus

Radius The radius of the Scent stimulus

Intensity The intensity of the Scent stimulus

969.3 Keywords

Aroma Scent Smell Sniff Nose Trace

Perception » Smell » Can Smell Scent

Page 1511

970 Smells Scent Tag

970.1 Description

Checks whether the Perception component is smelling a Scent Tag

970.2 Parameters

Name Description

Perception The Perception component

Scent Tag The Scent Tag to check

Value The comparison to the scent value

970.3 Keywords

Aroma Scent Smell Sniff Nose Trace

Perception » Smell » Smells Scent Tag

Page 1512

VII.II.II Events

Page 1513

971 Events

971.1 Sub Categories

Perception

Page 1514

VII.II.II.I Perception

Page 1515

972 Perception

972.1 Sub Categories

Awareness

Evidence

Hear

See

Smell

972.2 Events

On Change Awareness Level

On Change Awareness Stage

Page 1516

973 On Change Awareness Level

973.1 Description

Executed when the Awareness value of a target changes

973.2 Keywords

Perceive Alert Aware Suspicious Curious Detect

Perception » On Change Awareness Level

Page 1517

974 On Change Awareness Stage

974.1 Description

Executed when the Awareness value of a target changes

974.2 Keywords

Perceive Alert Aware Suspicious Curious Detect

Perception » On Change Awareness Stage

Page 1518

VII.II.II.I.I AWARENESS

Page 1519

975 Awareness

975.1 Events

On Relayed Awareness

Page 1520

976 On Relayed Awareness

976.1 Description

Executed when an agent with Perception receives new Awareness information from another agent

976.2 Keywords

Detect Bark Info Receive Propagate Transmit Communicate

Perception » Awareness » On Relayed Awareness

Page 1521

VII.II.II.I.II EVIDENCE

Page 1522

977 Evidence

977.1 Events

On Notice Evidence

On Relayed Evidence

On Tamper Evidence

Page 1523

978 On Notice Evidence

978.1 Description

Executed when an agent with Perception notices a new Evidence component

978.2 Keywords

See Detect

Perception » Evidence » On Notice Evidence

Page 1524

979 On Relayed Evidence

979.1 Description

Executed when an agent with Perception receives new Evidence information from another agent

979.2 Keywords

Detect Bark Info Receive Propagate Transmit Communicate

Perception » Evidence » On Relayed Evidence

Page 1525

980 On Tamper Evidence

980.1 Description

Executed when an agent tampers with an Evidence component

980.2 Keywords

Switch Change

Perception » Evidence » On Tamper Evidence

Page 1526

VII.II.II.I.III HEAR

Page 1527

981 Hear

981.1 Events

On Hear

Page 1528

982 On Hear

982.1 Description

Executed when the Perception hears a Noise

982.2 Keywords

Sound Noise Distract Alert Aural Hear

Perception » Hear » On Hear

Page 1529

VII.II.II.I.IV SEE

Page 1530

983 See

983.1 Events

On See

Page 1531

984 On See

984.1 Description

Executed when the Perception sees the specified (tracked) game object

984.2 Example 1

This Event will only execute on game objects that are being tracked

984.3 Keywords

Track Vision Sight

Perception » See » On See

Page 1532

VII.II.II.I.V SMELL

Page 1533

985 Smell

985.1 Events

On Smell

Page 1534

986 On Smell

986.1 Description

Executed when the Perception smells a Scent

986.2 Keywords

Odor Smell Aroma Nose

Perception » Smell » On Smell

Page 1535

VII.II.III Instructions

Page 1536

987 Instructions

987.1 Sub Categories

Perception

Page 1537

VII.II.III.I Perception

Page 1538

988 Perception

988.1 Sub Categories

Awareness

Evidence

Hear

See

Smell

988.2 Instructions

Track Awareness

Untrack Awareness

Page 1539

989 Track Awareness

989.1 Description

Starts tracking a game object in order to become aware of it

989.2 Keywords

Perceive Alert

Perception » Track Awareness

Page 1540

990 Untrack Awareness

990.1 Description

Stops tracking a game object and forgets about it

990.2 Keywords

Perceive Alert

Perception » Untrack Awareness

Page 1541

VII.II.III.I.I AWARENESS

Page 1542

991 Awareness

991.1 Instructions

Decrease Awareness

Increase Awareness

Relay Awareness Knowledge

Page 1543

992 Decrease Awareness

992.1 Description

Decreases the awareness of a target on a Perception component

992.2 Parameters

Name Description

Decrement The decreasing value of awareness

Perception The Perception component that changes its awareness

Target The target game object that changes its awareness

992.3 Keywords

Remove Less Know Detect Alert See

Perception » Awareness » Decrease Awareness

Page 1544

993 Increase Awareness

993.1 Description

Increases the awareness of a target on a Perception component

993.2 Parameters

Name Description

Increment The increment value of awareness

Maximum Level The maximum Awareness this increment can reach

Perception The Perception component that changes its awareness

Target The target game object that changes its awareness

993.3 Example 1

Use the Maximum Level if you want to increase the Awareness up to a certain threshold. For example, throwing a

bottle nearby will make guards suspicious but never reach the state of Aware

993.4 Keywords

Add Sum Know Detect Alert See

Perception » Awareness » Increase Awareness

Page 1545

994 Relay Awareness Knowledge

994.1 Description

Relays the Awareness knowledge of a game object to another Perception agent

994.2 Parameters

Name Description

Perception The Perception component that transmits its Awareness knowledge

Target The Perception component that receives the Awareness knowledge

Perception The Perception component that changes its awareness

Target The target game object that changes its awareness

994.3 Keywords

Communicate Shout Tell Inform Transmit Propagate Know Detect Alert See

Perception » Awareness » Relay Awareness Knowledge

Page 1546

VII.II.III.I.II EVIDENCE

Page 1547

995 Evidence

995.1 Instructions

Relay Evidence Knowledge

Restore Evidence

Tamper Evidence

Page 1548

996 Relay Evidence Knowledge

996.1 Description

Relays the Evidence knowledge of a Perception component to another

996.2 Parameters

Name Description

Source The Perception component that transmits its Evidences

Target The Perception component that receives the Evidence knowledge

996.3 Keywords

Communicate Shout Tell Inform Transmit Propagate

Perception » Evidence » Relay Evidence Knowledge

Page 1549

997 Restore Evidence

997.1 Description

Restores the state of the evidence so that other agents do not notice it

997.2 Parameters

Name Description

Evidence The Evidence reference

997.3 Keywords

Change Modify Manipulate Clue

Perception » Evidence » Restore Evidence

Page 1550

998 Tamper Evidence

998.1 Description

Tampers the evidence so that other agents notice it

998.2 Parameters

Name Description

Evidence The Evidence reference

998.3 Example 1

If a door is closed and the player opens it, the door can be considered as tampered and enemy agents will be able to

notice the change

998.4 Keywords

Change Modify Manipulate Clue

Perception » Evidence » Tamper Evidence

Page 1551

VII.II.III.I.III HEAR

Page 1552

999 Hear

999.1 Instructions

Emit Noise

Global Din

Page 1553

1000 Emit Noise

1000.1 Description

Emits a Noise Stimulus that other Perception components can process

1000.2 Parameters

Name Description

Position The center of the noise emitted

Radius The radius of the noise emitted

Tag The name identifier of the noise

Intensity The strength value used for the noise emitted

1000.3 Keywords

Sound Noise Distract Alert Aural Hear

Perception » Hear » Emit Noise

Page 1554

1001 Global Din

1001.1 Description

Changes the Global ambient din value

1001.2 Parameters

Name Description

Din The new value for the ambient background noise

Transition A set of options that allow to change the value over time

1001.3 Keywords

Sound Noise Ambient Aural Hear Deaf

Perception » Hear » Global Din

Page 1555

VII.II.III.I.IV SEE

Page 1556

1002 See

1002.1 Instructions

Change Global Luminance

Page 1557

1003 Change Global Luminance

1003.1 Description

Changes the global ambient Luminance value

1003.2 Parameters

Name Description

Luminance The new value for the global ambient Luminance

Transition A set of options that allow to change the value over time

1003.3 Keywords

Light Bright Dark Dim Night Sun

Perception » See » Change Global Luminance

Page 1558

VII.II.III.I.V SMELL

Page 1559

1004 Smell

1004.1 Instructions

Emit Scent

Set Dissipation

Page 1560

1005 Emit Scent

1005.1 Description

Emits a Scent Stimulus that other Perception components can process

1005.2 Parameters

Name Description

Source The game object emitting the scent

Dispel Duration The seconds it takes for the odor to fade out

Diffusion Rate The growth factor of the smell per second

Tag The name identifier of the noise

Intensity The strength value used for the noise emitted

1005.3 Keywords

Odor Smell Distract Alert Diffuse Dispel

Perception » Smell » Emit Scent

Page 1561

1006 Set Dissipation

1006.1 Description

Changes the global ambient Dissipation value

1006.2 Parameters

Name Description

Dissipation The new dissipation value. Values over zero reduce the smell dispel duration

Transition A set of options that allow to change the value over time

1006.3 Example 1

Dissipation values increase the time a scent dispels. A value of 0 means it doesn't affect the dispel time. A value of 1

means it doubles the time it takes to dispel it

1006.4 Keywords

Odor Smell Scent Nose Wind

Perception » Smell » Set Dissipation

Page 1562

VII.III User Interface

Page 1563

1007 User Interface

The Perception component comes with multiple UI (user interface) components that help communicate with the

player the current state of the Perception components around.

Awareness UI: Allows to show a floating indicator with the amount of awareness towards a certain object.

Luminance UI: Allows to track how much luminance (light intensity) is affecting the chosen target.

Noise UI: Determines the intensity of the highest noise being heard compared to the current din value.

Smell UI: Determines the scent with the highest intensity perceived by an agent.

The demos include three examples of UI component that can be dragged and dropped onto your scene(s) which you

can use or modify and tailor to your needs.

Ready-to-use Examples

Page 1564

1008 Awareness UI

The Indicator Awareness UI component is used to communicate the amount of Awareness a group of agents has

towards a specific game object (usually the Player).

The component shows the Awareness value taking as a point of reference a specific game object and gathering all

agents around a specific radius.

If your game has Perception agents that you don't want to display their awareness, you can filter them at the bottom of

the component. For example, you can filter them by their game object tag and only display those that are marked as

enemies.

Filter Enemies

Page 1565

The demos included in the Perception module come with a prefab that is ready to be dragged and dropped onto your

scene.

If you want to build your own UI it is highly recommended duplicating and modifying the one that comes packed with

the module.

Page 1566

1009 Luminance UI

The Luminance UI component can be used to communicate with the player the amount of light intensity (also known

as Luminance) received by a game object.

The Lit and Dim boxes allow to either draw how much light intensity has a specific game object or how much

engulfed in darkness it is.

Page 1567

If your game is struggling with performance it is worth changing the Update field from Every Frame to Interval. This will

allow to save some precious cycles and improve the performance of the game without barely affecting the gameplay.

The demos included in the Perception module come with a prefab that is ready to be dragged and dropped onto your

scene.

If you want to build your own UI it is highly recommended duplicating and modifying the one that comes packed with

the module.

Update at an Interval

Page 1568

1010 Noise UI

The Noise UI component allows to display a progress bar of the noise with the highest intensity heard by a

Perception component, as well as the amount of din.

If your game is struggling with performance it is worth changing the Update field from Every Frame to Interval. This will

allow to save some precious cycles and improve the performance of the game without barely affecting the gameplay.

Update at an Interval

Page 1569

The demos included in the Perception module come with a prefab that is ready to be dragged and dropped onto your

scene.

If you want to build your own UI it is highly recommended duplicating and modifying the one that comes packed with

the module.

Page 1570

1011 Smell UI

The Smell UI component allows to display a progress bar of the smell with the highest intensity caught by a

Perception component.

If your game is struggling with performance it is worth changing the Update field from Every Frame to Interval. This will

allow to save some precious cycles and improve the performance of the game without barely affecting the gameplay.

Update at an Interval

Page 1571

The demos included in the Perception module come with a prefab that is ready to be dragged and dropped onto your

scene.

If you want to build your own UI it is highly recommended duplicating and modifying the one that comes packed with

the module.

Page 1572

VII.IV Releases

Page 1573

1012 Releases

1012.1 2.1.4

Enhances

Editor: Support for Unity 6

Perception: Using more performant Unity 6 features

Fixes

Trigger: On Awareness Stage change incorrect detection

Editor: Support for new Unity 6 Light types

1012.2 2.1.3

New

Trigger: On Evience becomes Tampered or Restored

Fixes

Event: On Awareness Stage change skipping decrease

1012.3 2.1.2

(Latest)

Released October 18, 2024

Released July 30, 2024

Page 1574

New

Evidence: Option to start as tampered

UI: Show Percentage for each sensor

Enhances

See: Optics improved with more options

Evidence: Improved inspector layout

Changes

Internal: Support for Core 2.15.49 version

Fixes

UI: Components are executed after scene changes

Editor: Missing version number

Editor: Missing uninstall option

1012.4 2.0.1

New

First release

Released February 23, 2024

Released January 17, 2024

Page 1575

VIII. Shooter

Page 1576

1013 Shooter

Creating shooting mechanics is more complex than making bullets fly forward.

The Shooter module aims to provide all the necessary tools to create from the simplest top-down bullet-hell shooter

with hundreds of projectiles to a sniper simulator with realistic ballistic physics and weather conditions.

It also comes with a brand new FK / IK system that procedurally rotates and translates the arms and bodies of

humanoid characters in order to accurately aim at their target.

Get Shooter

The Shooter module is an extension of Game Creator 2 and won't work without it

Requirements

https://gamecreator.link/shooter
https://gamecreator.link/core

Page 1577

1014 Setup

Welcome to getting started with the Shooter module. In this section you'll learn how to install this module and get

started with the examples which it comes with.

1014.1 Prepare your Project

Before installing the Shooter module, you'll need to either create a new Unity project or open an existing one.

It is important to note that Game Creator should be present before attempting to install any module.

1014.2 Install the Shooter module

If you haven't purchased the Shooter module, head to the Asset Store product page and follow the steps to get a

copy of this module.

Once you have bought it, click on Window → Package Manager to reveal a window with all your available assets.

Type in the little search field the name of this package and it will prompt you to download and install the latest stable

version. Follow the steps and wait till Unity finishes compiling your project.

1014.3 Examples

We highly recommend checking the examples that come with the Shooter module. To install them, click on the Game

Creator dropdown from the top toolbar and then the Install option.

The Installer window will appear and you'll be able to manage all examples and template assets you have in your

project.

Examples: A collection of scenes with different use-case scenarios

Weapons: A large collection of read-to-use weapons where each showcase a different mechanic

Game Creator

Page 1578

The Examples requires all combat systems in order to work.

Clicking on the Examples install button will install all dependencies automatically.

Once you have the examples installed, click on the Select button or navigate to

Plugins/GameCreator/Installs/Shooter.Examples/ .

Dependencies

Page 1579

Page 1580

VIII.I Weapons

Page 1581

1015 Weapons

Weapons are assets that live in your project that allow to configure how a specific weapon works.

There are some cases where you'll have weapons that contain multiple shooting modes, such as an Assault Rifle that

also launches grenades. In these cases you should create two Weapon assets and equip them on the same prop.

You can equip as many Weapons as you want.

1015.1 Overview

To create a Weapon asset, right click on the Project Panel and navigate to Create → Game Creator → Shooter →

Weapon. This will create a new Weapon asset that you can move anywhere you want.

Multiple Weapons in a single one

Page 1582

Page 1583

1015.1.1 Weapon Data

Starting from the top there are the common fields:

Title: The name of the weapon. Useful for representing it in the user-interface or inventory.

Description: The description of the weapon, if necessary.

Icon: An icon Sprite associated with the weapon, if necessary.

Color: A color associated with the weapon, if necessary.

The next field is the Hit Reaction which is an optional field. If a Reaction is set, every time this weapon shoots and

hits a character, it will attempt to play a reaction on it.

If no Hit Reaction instance is set and the character doesn't have a default reaction, the receiving character won't play

any reaction at all.

The ID field uniquely identifies this weapon among the others. Despite being able to equip any number of weapons

simultaneously, it is forbidden to equip two weapons that share the same identifier.

The Weapon can optionally make the character enter an animation State. These states can also contain an On Enter

Gesture which can play the drawing animation of the weapon, and aiming with it.

The Layer field determines at which layer the State (if any) will be played.

1015.1.2 Weapon Mode

To configure a Weapon more easily you can click on the Enter Weapon Mode button and the scene will change into

one with a single weapon model in the scene.

Page 1584

The Weapon asset doesn't know which 3D model it will be used on. So by default it displays a water-gun model. You

can change it into the model you'll be using to more easily configure the weapon by selecting the model in the Change

Model field and clicking on the corresponding button.

Unity will remember this selection so every time you open this Weapon mode the new model will be picked.

Entering the Weapon Mode will change the Scene View and Hierarchy Panel into a new one similar to how entering

prefab mode.

In this mode you can configure:

The Muzzle: The tip of the muzzle is represented by a blue dot with a line that determines the direction in which

projectiles are shot from.

Sights: Sight points that the character will use as anchor points to determine the best position to aim from,

represented with the red color.

The Shell Ejection: A yellow point indicating a direction from which shells will be ejected from (if any).

Changing the 3D model

Page 1585

To modify all of these options, simply click on the white dot and use the Unity handles to translate and rotate the

source point and direction to the desired location.

1015.1.3 Magazine

The Magazine section is an expandable field that configures the type of ammunition the weapon uses.

The Ammo field must reference an Ammo asset. For more information about what and how to configure ammunition

see the Ammo section.

The Has Magazine field determines whether the whole ammunition is used without having to reload (when false)

or the weapon has a fixed magazine size from which the ammunition must be loaded to before shooting (when

true).

If the Weapon does have a magazine you can determine its size in the Magazine Size field.

The Auto Reload boolean field allows to define whether the character will attempt to reload the weapon when there

is no ammo in the magazine (if any) and the character is trying to shoot with it.

Page 1586

The Auto Reload field is not only useful for the player but also for creating enemy AI. By switching this field to true

you can skip checking whether an enemy has enough magazine ammo to shoot the player and simply focus on the

bang-bang.

1015.1.4 Muzzle

The Muzzle section configures where in the model is the point and direction from where projectiles are spawned.

Although the Position and Rotation of this field can be manually modified, it is easier to set by entering Weapon Mode

and moving the muzzle gizmo handle (the blue one).

1015.1.5 Fire

The Fire section determines how the weapon behaves when attempting to shoot with it. To know more about how to

shoot with a weapon, see the Shooting section.

Auto Reload for Player and Enemies

Using the Scene View

Page 1587

The Projectiles per Shot determines how many projectiles are used in a single shot action. The Cartridges per Shot

determines the amount of ammo used in a single shot action.

Page 1588

A Shotgun that shoots pellets will likely have more than 1 Projectiles per Shot because a single shot shoots multiple

bullets in a spread area.

On the other hand some weapons might have an alternate shooting mode that uses 4 Cartridges per Shot and the

potency of those shots is multiplied by a factor, at the risk of wasting more ammo each time the player misses.

The Mode is a dropdown field that allows to pick how the weapon behaves when pulling and releasing the trigger.

For more information about the firing modes check the Fire Mode section.

The Fire Animation field allows the character to play a Gesture when shooting.

The fields below allow customizing how this animation plays out, including the Avatar Mask for playing only a

certain set of bones of the character, set the Transition In and Transition Out when blending from the current pose

as well as choosing whether the character should respect the root motion of the clip or not.

For mechanical weapons, such as pistols and rifles, you might want to skip setting an animation and use procedural

aiming and recoil. The animation field is meant to be used for cases where the shot is not as precise, such as waving a

wand or casting a spell using a hand gesture.

The Fire Audio allows to play a sound effect when shooting with the weapon.

If the weapon doesn't have any available ammo however, the Empty Audio clip will be used instead (if any).

The Load Start is an audio clip that is played as soon as the player presses the weapon's trigger. Although this

usually coincides with the shooting, in some cases, such as the Charge fire mode or Full Auto with Progressive or

Wait to Load.

The common scenario is playing a rope stretching sound when starting to pull a bow or the gas vault release on a

flamethrower weapon.

The Load Loop field is an audio clip that is only used if the weapon's fire mode is set to Charge or Full Auto. This will

allow the weapon to play a continuous sound effect starting at a Min Pitch value all the way to Max Pitch if the

weapon has any kind of progressive mode.

The Muzzle Effect will instantiate a game object at the muzzle's position every time the weapon takes a shot.

Playing with Ammo and Projectiles

Not using a Fire Animation

Using Load to Start

Page 1589

The Muzzle Effect field is the perfect place to instantiate a gun's muzzle flash. The object can be pooled for maximum

performance, by ticking the Use Pooling checkbox.

The Use Force is an optional field that when ticked, it will allow the projectile shot to apply a force onto any Rigidbody

collision. If the checkbox is not marked, the projectile won't apply any force at all.

1015.1.6 Projectile

The Projectile section configures how the shot behaves once the weapon is instructed to take the shot and make the

projectile leave the muzzle.

The Shot field controls what type of projectile is shot and its values change depending on the option chosen.

For more information about the types of projectiles available check the Projectiles section.

The Impact field is optional and allows to attach a Material Sound asset that will be used at the point of impact of

any projectile shot when colliding with another object.

Muzzle Flashes

Page 1590

The Impact field is useful for playing different sound effects depending on the surface impacted and leaving behind

impact decals.

1015.1.7 Accuracy

The Accuracy section configures how the weapon behaves over time between shots.

Before digging into each of the fields, understand that each weapon has an internal accuracy value between 0 and 1,

which indicates how accurate is the character when shooting in a direction.

For example, if a character has an accuracy of 0 means that each shot will bullseye the target with a maximum

precision. However after taking a shot, the accuracy will likely decrease due to the settings explained below, which

makes each consecutive shot less precise, up to a maximum.

The Max Spread X and Max Spread Y fields indicate, in angle degrees, the maximum amount of error the projectile

will have when the accuracy value is at its minimum (usually when sprinting or after shooting a barrage of bullets

with an assault rifle).

The Spread Bias is a field between 0 and 1 that indicates the chance of a projectile landing towards the desired

direction or the outer-rim of the maximum spread factor.

Impact Effects

What is Accuracy?

Page 1591

In other words, if the character is sprinting and its accuracy is at its minimum, the Spread Bias determines whether

most shots will land at the center of the target (a value of 0) or towards the edges of the circle defined by the Max

Spread fields.

The Accuracy Recover indicates the speed rate at which the accuracy factor will recover, in seconds.

Motion Accuracy indicates the maximum accuracy a weapon will have when a character is moving and the Airborne

Accuracy indicates the same when the character is not grounded.

The Accuracy Kick value indicates how much the accuracy factor decreases with each shot. For example a value of

0.25 means that each shot will reduce by 25% the accuracy value.

1015.1.8 Recoil

The Recoil section allows to configure how the camera behaves when shooting with a weapon.

Understanding the Spread Bias

Page 1592

The Recoil value is separate from the Accuracy because recoil is meant to only affect the camera. Hence, in most

cases will only affect the player.

While the Accuracy is an internal value that recovers over time, the recoil is a system that moves the camera on

different directions after each shot, making it more or less hard for the player to aim after each consecutive shot.

The Use Recoil field determines whether to use or not recoil effects. By default it checks whether the character

wielding the weapon is the player or not.

The Camera field is used to identify which camera will be affected by the recoil, and the Recoil X and Recoil Y values

indicate, in angle degrees, how much the camera will rotate after each shot.

The Recoil Duration is the time it will take for the camera to rotate towards the desired recoil rotation after each

shot.

1015.1.9 Shell

The Shell section optionally configures the ejection of empty shells on the weapon.

The Position and Rotation fields indicate the point and direction at which shells are ejected from.

It is recommended to set these values by entering Weapon Mode and transforming the yellow gizmo handles.

The Prefab field is required if a weapon is going to eject a shell and it's a reference to a prefab object that will be

instantiated at the shell's position and rotation.

Recoil vs Accuracy

Using Weapon Mode

Page 1593

The Use Pooling field allows to improve performance by re-using previous prefab instances and it's automatically

handled by the module after ticking the checkbox.

The Force and Torque fields determine the force at which shells are ejected and rotated.

The Unity physics engine has some limitations when rigidbodies have high rotating velocities and it limits the angular

speed at which an object can rotate in order to avoid the whole physics to become unstable.

To eject a shell from a weapon all that needs to be done is to use the Eject Shell instruction.

Most semi-automatic weapons will eject the shell right after shooting, so the On Shoot instruction list is the perfect

place to add the instruction.

However others like a pump-action shotgun will eject the shell after pumping the weapon.

It's up to the game designer to pick the best place to eject a shell from.

1015.1.10 Jam

The Jam section configures whether a weapon can get jammed or not, and the animations to fix it.

Using high Torque

Ejecting shells

Page 1594

Jamming is a built-in mechanic in the Weapon asset that allows them to become not operational while the weapon is

jammed. A weapon can become jammed right before shooting and it must be fixed before being able to fire or reload

again.

The Chance field indicates the probability of a weapon becoming jammed. By default a value of 0 will prevent a

weapon from ever jamming, but increasing this value will add a chance.

The Chance field is dynamic and can change depending on different conditions. For example, a character getting into

mud water or rain pouring can increment the chances of a weapon being jammed.

The Animation field defines an animation that will be played when fixing a weapon. Note that the player will fix the

weapon after the animation finishes.

The Avatar Mask allows the animation to be played only on a specific set of bones, and the Transition In and

Transition Out fields control the blending duration of the animation.

The Audio field allows an audio clip to play when fixing the weapon.

1015.1.11 Sights

The Sights section contains collection of Sight assets that are uniquely identified by a name.

A Weapon can have 1 or more Sight entries, and each one allows the character to change its aiming mode (or pose).

What is Jamming

Dynamic Chance

Page 1595

For more information about what the Sight asset is and how to use them see the Sights section.

A list entry contains an ID field which uniquely identifies the Sight in the Weapon. This value is used to switch

between Sights during gameplay.

The Sight field is mandatory and is where all the Sight information is located.

The Scope Through checkbox allows to define a position and a distance from which the character will look through

the weapon when aiming. This can only be used if the Sight asset uses the Human IK bio-mechanic option.

This option is mostly used in first-person perspective games where the weapon is aligned with the main camera.

We recommend not using it for other perspectives because the alignment feels too forced and procedural animations

generally look better with forward kinematics from afar.

If the Scope Through option is checked it reveals a Position, Rotation and Distance fields. These fields define the

position and direction of the scope in local space, as well as the distance from the eye of the character.

These values can be set entering Weapon Mode, which is generally easier to do.

When to use Scope Through

Set using Weapon Mode

Page 1596

1015.1.12 Reloads

The Reloads section configures how a weapon can be reloaded and choose with Reload asset to use.

During a weapon's reload operation the character can optionally enter an animation State. The State field allows to

pick one as well as which Layer to set it.

The animation State can be ignored in most cases, since each Reload asset will play its own animation clip and will

override the State. However there are some cases where having an animation pose below might be useful.

The examples included in this module contain a Revolver weapon that reloads its bullets one by one. Each time it picks

a bullet from the pocket and puts it in the chamber is a single Reload asset being executed, while in the background,

the Revolver model sits in front of the character with the chamber open.

In these cases where cartridges are loaded one by one, an animation State allows to play an enter and exit animation

while having a pose in the background makes all animations flow seamlessly.

The next field is a list of Reload entries.

When attempting to reload a weapon, the weapon will start checking from the top-most Reload entry and will check its

conditions.

If there are none or the conditions are true then it will pick that Reload asset and run it.

Otherwise it will jump to the next one and check whether it is a suitable candidate or not.

When to use an animation State

How a Reload asset is picked

Page 1597

A Reload entry contains a Skip when full field, which allows to skip the entry if the weapon has its magazine full.

The Conditions below allow checking whether this entry is a suitable one or not. If no conditions are present, it

automatically returns success.

The Asset field is a reference to the Reload asset, which is mandatory in order to play a reload animation, and

contains all the necessary information to perform a reload action.

1015.1.13 Weapon Animations

The Weapon Animations section contains a list of optional animation clips that can play under different

circumstances on the weapon's prop model.

In most cases you won't even need to use weapon animations, and we recommend leaving them until all the other

settings have been properly configured.

However in some cases, where the weapon changes its shape depending on its state (whether it has been jammed, it's

there's no bullet in the chamber, etc...) you might want need to provide an animation to the weapon.

In order for the weapon to use these animations, the weapon model's root object must have an Animator component.

When to use Weapon Animations

Animator Required

Page 1598

1015.1.14 Instructions

The bottom section of the Weapon asset is dedicated to adding your own custom logic via Instructions and

Conditions.

1015.1.14.1 On Equip

The On Equip instructions are executed every time the weapon is equipped using the Equip Weapon instruction. Self

refers to the character wielding the weapon while Target points at the weapon model.

This is a good place to initialize stored information and instantiate its attachments.

Useful for...

Page 1599

1015.1.14.2 On Unequip

The On Unequip instructions are executed when the weapon is unequipped using the Unequip Weapon instruction.

Self refers to the character wielding the weapon while Target points at the weapon model unequipped.

Just like its counterpart, this is the perfect place to destroy or undo those actions done in the On Equip instructions.

1015.1.14.3 Can Shoot

The Can Shoot conditions are checked every time the character attempts to shoot with the weapon. Returning a

false value will prevent the weapon from shooting.

Self refers to the character wielding the weapon while Target points at the weapon model unequipped.

Situations where the character shouldn't be able to jump, like a cinematic sequence or being inside a non-combat zone.

1015.1.14.4 On Shoot

The On Shoot instructions are executed every time the character successfully shoots with the weapon. Self refers to

the character wielding the weapon while Target points at the weapon model unequipped.

Ejecting shells and making noises (if paired with the Perception module).

1015.1.14.5 On Start Reload

The On Start Reload instructions are executed every time the character starts reloading the weapon. If multiple

reloads are chained together, these instructions will only run the first time, until the weapon is fully reloaded or the

reloading operation is canceled. Self refers to the character wielding the weapon while Target points at the weapon

model unequipped.

1015.1.14.6 On Finish Reload

The On Finish Reload instructions are executed every time the character finishes reloading the weapon. Whether that

is because the weapon has been fully reloaded or the user has canceled the reload. Self refers to the character

wielding the weapon while Target points at the weapon model unequipped.

1015.1.14.7 Can Hit

Useful for...

Useful for...

Useful for...

Page 1600

The Can Hit conditions are executed for every object that the projectile (in any mode) reported as a hit. If these

conditions are empty or the conditions return true the object is considered as hit and will run the On Hit instructions

from below.

Self refers to the character wielding the weapon while Target points at the object reported as a hit.

Filtering objects and characters that shouldn't receive a hit. For example, if you disable friendly-fire, allies of the

character shooting should return false.

1015.1.14.8 On Hit

The On Hit instructions are executed for every object that the projectile (in any mode) reported as a hit and the Can

Hit conditions did not filter.

Self refers to the character wielding the weapon while Target points at the object reported as a hit.

Applying damage and effects onto each object hit by the projectile.

Useful for...

Useful for...

Page 1601

1016 Fire Modes

Each Weapon has a fire-mode that changes its behavior when attempting to pull and/or release the trigger.

1016.1 Single

The Single fire mode shoots a projectile once per trigger pull. Holding down the trigger won't make it shoot any more

than 1 single time.

This option also displays a Fire Rate field that determines the maximum amount of shots the weapon can shoot in a

second.

1016.2 Burst

The Burst fire mode is similar to the single mode except that it shoots a burst of up to N projectiles while holding

down the trigger.

The Fire Rate field sets the spacing and maximum amount of projectiles shot in a second, while the Burst field

indicates the maximum number of shots while holding down the weapon's trigger.

1016.3 Full Auto

The Full Auto fire mode continuously shoots projectiles while the weapon's trigger is being held down, and the

magazine has enough ammo.

Page 1602

Choosing this option will reveal the Fire Rate field that indicates the rate at which this weapon shoots projectiles as

well as the Auto Loading field. This field has three options:

Instant: The weapon shoots at its maximum fire rate as soon as the trigger is pressed.

Progressive: The weapon starts with a fire rate of 0 and progressively increases over time defined by the field

Auto Load Duration.

Wait to Load: The weapon starts with a fire rate of 0 and will change to its maximum fire-rate after holding down

the weapon's trigger the duration defined by the field Auto Load Duration.

The Shooter 2 module comes with a wide variety of examples where each weapon has a particular and distinctive

feature that differentiates it from the rest.

The Flamethrower for example, is a weapon that has an Full Auto firing mode with a Wait to Load value. When the

player attempts to shoot with it, it first needs to release some gas and after a few seconds, it starts spitting fire.

The Minigun on the other hand, also has a Full Auto firing mode but with the Progressive auto-loading mode. This

allows the weapon to incrementally shoot more bullets as the barrel starts gaining momentum and spins faster.

Notice how you can create vastly different weapon types changing a few parameters, and it's up to the game designer

finding out the best combination.

1016.4 Charge

The Charge fire mode shoots a single projectile after the weapon has charged for a certain amount of time, and this

mode reveals a few new fields.

THe Min Charge Time and Max Charge Time determine the minimum and maximum amount of time to consider the

weapon is charged and fully-charged respectively.

The Auto Release field indicates whether the projectile should be automatically shot when fully-charged or wait until

the player manually releases the trigger.

The Duration field only works if the Auto Release is set to true, and indicates the extra time after it has been fully-

charged it gives the weapon until it is forced to shoot the projectile.

Use cases in Examples

Page 1603

A bow and arrow is the most common example of charged weapon. The Min Charge Time would represent the

minimum amount of tension the arrow requires to be pulled back in order to be shot. The Max Charge Time would be

how fast the character can pull the arrow back into tension with the sling.

Some games also make it so the character can't hold the tension of the bow forever. In which case the Auto Release

would be set to true and the Duration would be how many seconds the character can withstand the force before getting

the arm tired and releasing the arrow.

Bow and Arrow

Page 1604

1017 Projectiles

Each Weapon can choose its projectile type by selecting it from the dropdown under the Projectiles section.

1017.1 Raycast

The Raycast projectile option draws a line from the muzzle forward and hits the first collider object that intersects its

path.

Page 1605

The Layer Mask allows to ignore certain colliders under the unselected mask(s).

The Max Distance determines the maximum distance at which the raycast line can reach.

The Pierces value is the number of extra objects it can pierce without stopping. By default it is zero, but you can

make a weapon pierce through colliders by increasing the value.

If the Use Line Renderer field is set, a list of options will appear below, which allow to configure the material, color,

width and texture mode of the trail left by the projectile.

Although using the Raycast mode makes the projectile have an infinite amount of speed you can simulate the

projectile's travel time by making adding a Line Renderer who's trail quickly decreases towards the point of impact.

This will give the player the illusion that the projectile travels very fast, but it's not instantaneous.

1017.2 Kinematic Projectile

The Kinematic Projectile option instantiates a game object at the muzzle and shoots it forward using its settings.

Simulate bullet speed using Line Renderers

Page 1606

Do not add a Collider or Rigidbody to the kinematic projectile. Collisions are handled internally using raycasts between

frames to avoid very fast projectiles from ghosting through thin geometry.

This means that Kinematic projectiles do not have a volume and are infinitely small. If you want to make projectiles use

their shape to collide with other objects use the Rigidbody Projectile.

The Prefab field is mandatory and is used to instantiate the projectile at the tip of the muzzle.

The Delay field will defer the movement of the projectile the specified amount of seconds. If the value is greater than

zero, the projectile will follow the muzzle tip until the timeout has finished and it's ready to be sent forward.

Collision with Kinematic

Page 1607

The Force value indicates the simulated force the bullet will be shot with. The higher the value, the faster it will travel.

The Gravity field allows the projectile to be affected by a downward force.

The Air Resistance field allows bullets to lose speed over time. This field can be a combination of both bullet drag,

temperature, air pressure and resistance.

The Wind Influence field is a coefficient that indicates how much does wind affect the bullet's trajectory. A value of 1

means the wind will completely affect the bullet while a value of zero will skip the wind calculations.

Some types of ammunition are affected more or less by wind, depending on its material, shape and spinning factor. You

can model this behavior by letting the Wind coefficient be tied together to the ammunition used.

The Attraction Force can be used to nudge the projectile towards a specific target. This target must be set in the

Attraction Target value.

The Layer Mask field allows the projectile to ignore certain colliders defined in the mask and the Max Distance

determines how far the projectile can travel.

The Hit field is a dropdown which can be:

On Impact: The projectile reports a hit as soon as it collides with an object.

On Timeout: The projectile reports a hit after a certain time has passed.

The Pierces field allows the projectile to pierce through a number of colliders before being destroyed.

The Timeout field allows the projectile to be automatically destroyed, even if it hasn't collided with any object and

still has travel distance available.

1017.3 Rigidbody Projectile

The Rigidbody Projectile option allows to instantiate an object that uses Unity's physics engine to drive its

translation and rotation.

Sniper Simulator

Page 1608

The Rigidbody is similar to the Kinematic system, but it uses Unity's physics engine which is multi-threaded, improving

performance, but also has fewer options.

The Prefab field is mandatory and is used to instantiate the projectile at the tip of the muzzle.

The Delay field will defer the movement of the projectile the specified amount of seconds. If the value is greater than

zero, the projectile will follow the muzzle tip until the timeout has finished and it's ready to be sent forward.

The Impulse and Impulse Force determines the force applied to the rigidbody and whether the force takes into

account the projectile's mass or not.

Rigidbody vs Kinematic

Page 1609

The Mass field, as its name implies, defines the mass of the projectile.

The Air Resistance field allows bullets to lose speed over time. This field can be a combination of both bullet drag,

temperature, air pressure and resistance.

The Wind Influence field is a coefficient that indicates how much does wind affect the bullet's trajectory. A value of 1

means the wind will completely affect the bullet while a value of zero will skip the wind calculations.

The Attraction Force can be used to nudge the projectile towards a specific target. This target must be set in the

Attraction Target value, and the force applied towards its position may or may not take into account the mass of the

projectile.

The Max Distance determines how far the projectile can travel before being automatically disposed.

The Hit field is a dropdown which can be:

On Impact: The projectile reports a hit as soon as it collides with an object.

On Timeout: The projectile reports a hit after a certain time has passed.

The Timeout field allows the projectile to be automatically destroyed, even if it hasn't collided with any object and

still has travel distance available.

1017.4 Tracer Target

The Tracer Projectile option allows to define a target to shoot at, and the projectile will always move towards it,

regardless of its shooting direction.

Page 1610

The Tracer Target is usually used when you have a lock-on on a target and you want shots to (almost) always impact

the target. For example, a barrage of missiles or a weapon that automatically shoots at the nearest enemy.

The Prefab field is mandatory and instantiates the projectile at the tip of the muzzle.

The Delay field will defer the movement of the projectile the specified amount of seconds. If the value is greater than

zero, the projectile will follow the muzzle tip until the timeout has finished and it's ready to be sent forward.

The Speed field determines how fast the projectile moves.

The Target value is mandatory and is required in order to translate the projectile from the muzzle to the targeted

game object's position.

The Deviation X and Deviation Y fields allow to artistically deviate the path of the projectile while making sure it

always lands on the target.

The Tracer Target uses a Bézier curve in order to draw the projectile's path. The Deviation fields act as control points

on the start of the curve, in local space from the muzzle's direction.

When to use Tracer

Using Bézier curves

Page 1611

The Layer Mask field allows the projectile to ignore certain colliders defined in the mask.

Page 1612

VIII.II Sights

Page 1613

1018 Sights

The Sight assets determine an aiming mode for a weapon, such as whether it uses forward-kinematics, inverse

kinematics, the animations it plays, crosshairs, laser points and so on.

To create a Sight asset, right click on the Project Panel and navigate to Create → Game Creator → Shooter → Sight.

This will create a new Sight asset that you can move anywhere you want.

The Can Shoot field determines whether the weapon using this sight can shoot or not.

Sight assets offer the flexibility to create different poses and mechanics depending on the situation. For example, if a

character draws the weapon but keeps it on its side, this is a non-shooting sight and the previous value should be set to

false .

One can even make a cover shooter mechanic using Sight assets where being in cover makes it impossible to shoot,

but peeking around corners, which could be other Sight assets switched to, allows the character to aim and shoot.

Using non-shooting Sights

Page 1614

When aiming with multiple weapons, the Inverse Kinematics system will only use one Sight information to translate

and rotate limbs. The Priority field determines which weapon should be picked up by the system to aim.

For example, let's say we're making a game where the player can equip a pistol on its right hand and optionally, a

flashlight on the left side.

The Sight of the pistol weapon should have a higher priority because aiming with the pistol with precision is more

important than with the flashlight. In this case, the pistol should have a higher priority value.

In case of equipping multiple weapons with equally importance, the priority doesn't matter because each Sight should

take over both the left and right hands and aim with them.

The Smooth Time determines how much the weapon lags behind when aiming. If disabled, there won't be any lag

but the character will instantly aim towards the targeted point. Adding some lag helps making the aiming feel more

organic and natural.

The State field allows to enter an animation State when switching to the Sight.

It is specially useful to mix Weapon states and Sight states. While the animation state in the Weapon asset can provide

a common locomotion animation on the lower body, the Sight state can mask the lower-body so it only changes the

upper-body.

This is how the demos in this module are built and helps reduce the number of animations needed.

1018.1 Instructions

The On Enter and On Exit instructions are executed every time a Sight is switched to and switched from.

A common mechanic in third-person shooters is reducing the field of view when aiming with an over-the-shoulder

camera.

This can be very easily done adding a Change Field of View instruction on both callbacks: On Enter should reduce the

field of view and On Exit restoring the default value.

1018.2 Aiming

The next section configures where the character aims when using this Sight.

Example of Priority

Using Avatar Masks in States

Changing modes

Page 1615

The Accuracy field allows to define a minimum accuracy value. A value of 0 (default) means the accuracy can be at

its highest. However some games make some poses like hip-fire or blind-shooting from cover have less accuracy

than aiming down-sides.

The Aim field is a dropdown that changes where the character should aim and how this point in space is calculated.

1018.2.1 Camera Center at Distance

The character aims at a point that is aligned with the camera's forward vector and at the specified distance.

This aiming mode should be the default for the player in first-person and third-person shooters. It sacrifices precision

but in return it is more performant.

1018.2.2 Camera Center with Raycast

The character aims at the intersection (if any) between the forward vector from the camera's perspective and the

weapon's muzzle vector.

This aiming mode should be used by first-person and third-person shooters where precision is paramount. It casts a ray

from the camera's center forward and aims at the point collided.

This aiming mode avoids the character shooting at obstacles that get in the way between the muzzle and the targeted

point by slightly rotating the weapon towards the estimated point of impact, instead of a point at a certain distance.

1018.2.3 Character Target

The character aims at a specific game object's position.

When to use

When to use

Page 1616

This aiming mode should be used when the weapon has a lock-on mechanic, and the target does not depend on where

the camera or cursor is.

1018.2.4 Pointer on Plane

It creates an abstract plane on the character's position defined by two axis and projects the point onto it from the

camera perspective.

This aiming mode is perfect for top-down shooters or side-scroll games.

For top-down shooters, the projection plane should be a horizontal one (XZ) and for side-scroll perspectives either XY

or ZY, depending on the vertical plane where the characters can move.

1018.3 Biomechanics

The Biomechanics dropdown configures how the character translates and/or rotates its bones in order to attempt to

aim at the desired point defined by the Aim field from above.

To know more about the Biomechanics options see the Biomechanics section

1018.4 Trajectory

When to use

When to use

Page 1617

The Trajectory section allows to draw the trajectory of the projectile when using this Sight.

Note that in order to calculate the projectile's trajectory, the system has to trace multiple raycasts every frame and

enabling this option could have an impact on performance.

Page 1618

Trajectories are specially useful for weapons that do not have enough with just a crosshair because the projectile is

influenced by physics or other conditions. For example, an arrow, a crossbow or a sniper-rifle.

1018.5 Crosshair

When to use

Page 1619

The Crosshair section allows to display a crosshair UI element on top of the camera which changes its shape to

indicate the current character's accuracy.

This section accepts a Crosshair asset which is an optional reference to the skin of the crosshair, which can be

reused for other weapons.

For more information about creating and using Crosshair assets visit the Crosshair section.

Crosshairs are meant to be used for weapons that are equipped by the Player and shoot straight projectiles without

suffering the effects of external factors.

1018.6 Laser

When to use

Page 1620

The Laser section allows to display a line renderer that moves in a straight line from the muzzle tip (plus an optional

offset) forward.

If an object collides with the laser, an optional Dot prefab instance is instantiated at the collision point.

Page 1621

Lasers are useful for NPCs so the player sees where they are aiming at as well as for the player's weapons in case you

want to avoid non-diegetic interface elements.

1018.7 Animations

The last section of Sights is dedicated to how playing animations on weapons

The Reloading uses FK, Shooting uses FK and Fixing uses FK fields determine whether during the animation the

character should use forward kinematics or turn them off.

The Reloading uses IK, Shooting uses IK and Fixing uses IK fields determine whether during the animation the

character should use inverse kinematics or turn them off.

In most cases it is recommended to keep those checkboxes turned off because if the character is, for example,

reaches to the hip to get a new ammo pack to reload the weapon, if the body is rotated 45 degrees to one side, the

hand might reach somewhere else other than the hip and look unnatural.

However for cases where the hands don't have to mimic reaching out for a particular spot, enabling these values will

allow animations to feel more natural, since they don't reset to the default pose when being played.

When to use

When to enable

Page 1622

1019 Biomechanics

The Biomechanics field configures how the character should rotate and translate individual bones in order to reach

the desired shooting direction.

Game Creator will automatically add a Human Shooter rig onto the list of Inverse Kinematics, it is highly recommended

to manually place it in Editor mode so you can choose the order in which rigs run.

1019.1 None

The None option is the simplest to understand and most performant. It doesn't bend any bones and the weapon

stands still in the direction determined by the current character's animation(s).

The None option is most suitable for non-humanoid characters such as turrets, where the rotation of the muzzle is

handled by another script or visual scripting system.

It is worth noting that the demos in this module include an example of a turret following the player at a constant

interval, in which the rotation is handled by an external visual scripting Trigger.

1019.2 Human FK

The Human FK option uses forward kinematics in order to distribute the desired rotation among multiple bones.

Use Human Shooter Rig

When to use

Page 1623

The Human FK should be the default system used for any humanoid character, except for first-person view where the

weapon uses some part of the weapon as the scope. It is the most realistic and natural-looking from afar.

The Optics field is used to determine the vision point from which the character looks through. This is used to align

the direction of the weapon towards the desired shooting point.

Although the name Human FK suggests that it only uses forward kinematics, some features do use inverse kinematics.

The FK in the name only refers to the fact that it only uses FK for rotating the body-chain to aim. But weapon recoil, off-

hand movement and other features use inverse kinematics.

1019.2.1 Recoil

The Recoil section configures how each shot affects the procedural recoil of the weapon. It allows to customize the

amount of backwards movement and the translation and rotation in local space of the weapon's shooting kickback.

It also allows to customize which bones are affected by the recoil and the force distribution among them.

When to use

Human FK and IK

Page 1624

The Recoil movement is always applied to the parent bone of the weapon prop, as long as it's either the right hand or

the left hand. If it's any other bone, these values will be ignored.

1019.2.2 Free Hand

The Free Hand section configures how the off-hand (if any) behaves.

Because the main hand holding the weapon can be moved around using procedural motion, the free-hand can be

snapped at a specific point of the weapon to also follow it around.

The Free Hand settings are meant to be applied to either one or both hands, and are usually used to place the off-hand

on a handle, such as below the barrel of a shotgun.

The hand can either be attached to the weapon prop or a Transform object, with an optional position and rotation

offset.

Because the hand uses inverse kinematics, an optional Pole object can be used to drive the elbow direction between

the two-bone kinematic chain.

1019.2.3 Bones Pitch

The Bones Pitch configure how the rotation to aim with the weapon upward or downwards is distributed among the

bones from the hip, up to the hand, and optionally the neck and head of the character.

The Max Pitch is the maximum angle in degrees the character can rotate up and down.

1019.2.4 Bones Pitch

The Bones Yaw configure how the rotation to aim with the weapon to the sides is distributed among the bones from

the hip, up to the hand, and optionally the neck and head of the character.

The Max Yaw is the maximum angle in degrees the character can rotate to either side.

1019.2.5 Bones Lean

Characters can also lean to the right or left side and while the camera will follow, the character can also bend their

spine to peak around corners. The Bones Lean section configures how the rotation is distributed among the spine

bones when bending.

Where is Recoil applied

When to use Free Hand

Page 1625

1019.3 Human IK

The Human IK option uses inverse kinematics in order to move the bone holding the weapon prop so it is aligned

along the line of sight defined by the optics and the target point.

The Human IK should be used for first-person games where the optics are diegetic, such as iron scopes and reflex

sights.

The weapon prop will not respect the original animation and can easily look funny from a third-person view. However it

offers unparalleled precision and the shots will land exactly where the sight it set.

When to use

Page 1626

1019.3.1 Recoil

The Recoil section configures how each shot affects the procedural recoil of the weapon. It allows to customize the

amount of backwards movement and the translation and rotation in local space of the weapon's shooting kickback.

It also allows to customize which bones are affected by the recoil and the force distribution among them.

The Recoil movement is always applied to the parent bone of the weapon prop, as long as it's either the right hand or

the left hand. If it's any other bone, these values will be ignored.

1019.3.2 Free Hand

The Free Hand section configures how the off-hand (if any) behaves.

Because the main hand holding the weapon can be moved around using procedural motion, the free-hand can be

snapped at a specific point of the weapon to also follow it around.

The Free Hand settings are meant to be applied to either one or both hands, and are usually used to place the off-hand

on a handle, such as below the barrel of a shotgun.

The hand can either be attached to the weapon prop or a Transform object, with an optional position and rotation

offset.

Because the hand uses inverse kinematics, an optional Pole object can be used to drive the elbow direction between

the two-bone kinematic chain.

1019.3.3 Bones Pitch

The Bones Pitch configure how the rotation to aim with the weapon upward or downwards is distributed among the

bones from the hip, up to the hand, and optionally the neck and head of the character.

The Max Pitch is the maximum angle in degrees the character can rotate up and down.

1019.3.4 Bones Pitch

The Bones Yaw configure how the rotation to aim with the weapon to the sides is distributed among the bones from

the hip, up to the hand, and optionally the neck and head of the character.

The Max Yaw is the maximum angle in degrees the character can rotate to either side.

Where is Recoil applied

When to use Free Hand

Page 1627

1019.3.5 Bones Lean

Characters can also lean to the right or left side and while the camera will follow, the character can also bend their

spine to peak around corners. The Bones Lean section configures how the rotation is distributed among the spine

bones when bending.

1019.3.6 Sway

The Sway Weight determines how much the weapon lags behind and the Sway field determines how fast the

weapon recovers from the sway.

Increasing the sway will make weapons feel heavier and slower to use. You can use this value to infuse weight to your

weapons and make them distinct from one another.

1019.3.7 Obstruction

The Pull on Obstruction checkbox allows weapons to be pulled towards the optics if a collider gets between the

muzzle and the optics.

This is useful for situations where the player gets very close to a wall and the weapon clips through it. It is worth

noting that enabling this option comes with some performance cost in which it casts rays to know if there's a

collider obstructing the view.

Using sway

Page 1628

1020 Ammo

The Ammo asset contains information about whether each shot uses a finite resource or an infinite amount of it.

The first field is the ID which uniquely identifies the ammunition value.

The Title, Description, Color and Icon fields are common values that are useful for representing information in the

user interface, but do not have any impact on the game.

The Infinite checkbox determines whether the ammunition is infinite or finite. If left unchecked, it will reveal a Value

field below, which indicates the value to get and set the ammunition from.

By default, every weapon has a munition value which tracks a value that represent the weapon's total ammunition.

However this value can be changed to use an Item from the Inventory 2 module as the source of ammunition, or a Stat

value from the Stats 2 module (such as mana).

Source of ammunition

Page 1629

To create an Ammo asset, right click on the Project Panel and navigate to Create → Game Creator → Shooter →

Ammo. This will create a new Ammo asset that you can move anywhere you want.

Page 1630

1021 Reloads

The Reload asset is used to play a reloading action for one or multiple weapons.

Page 1631

Page 1632

To create a Reload asset, right click on the Project Panel and navigate to Create → Game Creator → Shooter →

Reload. This will create a new Reload asset that you can move anywhere you want.

The ID field uniquely identifies the reloading asset among the others.

The Title, Description, Color and Icon fields are common values that are useful for representing information in the

user interface, but do not have any impact on the game.

1021.1 Animation

The Animation field is a mandatory animation clip that is played when reloading the weapon. It is required in order to

set up the sequence from below.

The Mask field is optional and allows to ignore the animation on certain character bones.

The Transition In and Transition Out fields allow the reloading animation to smoothly blend in and out of the current

character's pose.

1021.2 Reload Mode

If the Reload asset has an animation clip, the Enter Reload Mode button will be enabled. Entering this mode will

allow to scrub the animation in the scene view and choose where to play different effects and define ranges for

specific features.

Page 1633

The Reload asset does not know which character or weapon prop will run this animation. You can change the character

and weapon placeholders choosing them from the corresponding fields and clicking on Change Character and Change

Weapon buttons.

These values will be internally saved so you don't need to set them up every time you enter this configuration mode.

1021.2.1 Magazine Track

The first (yellow) track of the Reload sequencer serves as a handy magazine system that allows to seamlessly

create a new magazine (or any game object instance) and move it from a character's limb and parent it to the

weapon.

The yellow track range begins by instantiating an instance of the chosen prefab at the specified bone, and at the end

of the track it will re-parent it to the weapon's position while smoothly translating and rotating it into place.

Character and Weapon

Page 1634

You can access the previous and current weapon's magazine from any Game Object property dropdown and selecting

Reloading Previous Magazine and Reloading New Magazine respectively.

For example, the demos include a pistol weapon that drops the previous magazine while picking one from the

character's pocket and inserting it into the pistol's handle slot.

1021.2.2 Quick-Reload Track

The second (green) track of the Reload sequencer allows weapons to be quick-reloaded.

The Quick-Reload mechanic is also known with other names, such as active reloading or pro reloading. It allows to skip

part of the reloading animation by givin the player one chance to press a key at a specific time.

Adding a Quick Reload track will display a green range from which if the instruction Try Quick Reload runs it will

cancel the remaining of the animation but will successfully finish the reloading.

Drop the previous Magazine

What is a Quick-Reload

Page 1635

Note that if the Try Quick Reload instruction runs outside of the green range but during a reloading action, the system

will register the attempt as a failed quick-reload and the animation will proceed until it's finished or canceled by another

action.

1021.2.3 Instructions Track

The third track is dedicated to adding zero, one or multiple instructions that can run at different points of the reload

animation.

Quick-Reload attempts

Page 1636

These instructions points are useful to play sound effects, change blend-shapes during the animation at specific points

in time, dropping the previous empty magazine or even ejecting shells.

1021.3 Configuration

The Speed field determines the speed at which the reload animation happens. This value is dynamic and can be tied

to other values, such as Stats or Variables.

The Discard Magazine Ammo determines whether the remaining ammunition in the magazine should be kept or not

after reloading.

Most games do not discard magazine ammo, while others offer an option to either play a fast-reload animation that

discards the current ammo or play a slower one where the rest of the magazine is kept.

The ultimate choice is yours and will depend on the type of game you want to make.

The Reload field determines the amount of ammo added to the magazine. The value can either be:

Maximum: The magazine is filled to its maximum, as long as there is enough ammunition.

Value: The magazine increments up to a maximum value defined in another field.

Most weapons will refill the magazine to its maximum. However, some games allow certain weapons to be reloaded

bullet by bullet, like revolvers or shotguns.

This behavior can be achieved by choosing the Value option and increasing the magazine size by 1 each time. As long

as the magazine is not filled and there is enough ammunition on the character's pouch, it will run again.

1021.4 Instructions

Why use Instructions

Discarding magazine ammo

Reloading one by one

Page 1637

The On Start and On Finish instructions, as their name implies, are instructions that run at the beginning and at the

end of the reloading action.

Page 1638

1022 Wind

The Shooter module allows to create from basic shooting mechanics to realistic ballistics that take into account

wind force and direction, bullet drag and different gravities.

Wind is a global value that exists in the world that contains a direction and magnitude value, which indicate the

direction of the wind as well as its force.

To change the Wind value use the Change Wind instruction, which accepts a Direction value and a Force.

Alternatively you can also use the Change Wind Force and Change Wind Direction instructions if you only want to

modify one component of it.

Once the Wind has a value it will automatically affect any projectiles that have some degree of exposure to the wind,

such as Kinematic and Rigidbody projectiles.

More Instructions

Page 1639

Page 1640

1023 User Interface

The Shooter module comes with a few components and materials that help build user interfaces that communicate

vital information to the player about the current amount of ammo, total amount, precision, and so on.

1023.1 UI Components

There are two UI components that can be attached to any game object and refreshes its contents whenever a

specific weapon on a character changes its value(s).

1023.1.1 Ammo UI

This component can display a weapon's ammunition in multiple ways.

1023.1.2 Reload UI

This component displays information when the chosen weapon is being reloaded, including information about the

Quick-Reload timings and progress bars that show the remaining duration of a reload action.

Page 1641

1023.2 Crosshairs

Crosshairs are a special kind of skins that can be reused among multiple weapons, and their asset reference must

contain a prefab that has a Crosshair UI component at the root.

Crosshairs can be set in each Sight's Crosshair section and at runtime they will be displayed on the screen.

1023.2.1 Crosshair UI

The Crosshair UI component contains multiple optional fields that can be filled with Unity UI elements in order to

customize the behavior and design of the interface elements.

Page 1642

The Reticle references the object that can be moved around to represent the point in screen space where the

character is aiming at.

The Direction field is a dropdown that allows to choose how the reticle behaves. By default it doesn't move at all but

its value can be changed to:

Away from Player: The reticle rotates away from the character wielding the weapon.

Away from Screen Center: The reticle rotates away from the character wielding the weapon.

In most third and first person games, the reticle won't move so this field can be left in blank. However in some games,

the reticle moves around the screen.

In top-down shooters or side-scroll games where the player stands in the middle and the aiming reticle shows where

the shots will land, the Direction value should be set to Away from Player or Away from Screen Center, depending on

whether the player is always at the center or can also move around.

When to use Reticles

Page 1643

The rest of the fields have two values in each line. The left value represents the value when the accuracy has its

minimum value, while the right one represents when it's at its maximum.

For example, setting an image in the Accuracy Fill field with Fill value of 0 and 1 means that when the character's

accuracy is at its lowest, the progress bar won't be filled at all. And when the accuracy is at its maximum, the

progress bar will be filled.

There are multiple examples of crosshairs in the demos. It is highly recommended to check them and understand how

they work in order to create your own.

1023.3 Scopes

Although technically it's not part of the user interface, the Shooter module comes with a shader that can b applied to

any material to simulate holographic scopes.

The Sniper and Assault Rifle weapons included in the demos, both use a material with this shader applied.

Multiple examples

Sniper and Assault Rifle demos

Page 1644

Page 1645

This shader has been carefully designed to include the maximum amount of utilities built-in squeezing maximum

performance. However it also comes with the Shader Graph source in case you want make a copy and add extra

features.

Iron sights require two parts to b aligned in order to determine the direction of the weapon. On the other hand,

holographic lenses project a dot at the infinite, allowing for a much more faster target acquisition.

The Holoscope shader comes with a few utilities that allow projecting multiple elements at the infinite in order to

simulate the real-life behavior of a holo sight.

Holographic Scopes

Page 1646

1024 Usage

The Shooter module has been designed so it's very easy to set up and incrementally add more complex features as

your game requires.

It is highly recommended that you check the demo examples. This section assumes you have read the rest of the

documentation and you're familiar with the concepts of Weapon, Sight, Reload and Ammo assets.

1024.1 Equipping

Before doing any shooting, a character must first equip a Weapon asset and identify the prop that will be used as

that weapon.

The Equip Weapon and the Unequip Weapon instructions serve this purpose.

The most common way to equip a weapon is to attach a prop using the Attach Prop instruction and right after that use

the Equip Weapon referencing the last prop equipped.

This workflow works also when using other modules, such as the Inventory 2.

1024.2 Shooting

To make a character shoot with their weapon(s) use the Pull Trigger and Release Trigger instructions. Depending on

the type of weapon that listens to these commands, the weapon wil behave one way or another.

Check the demos

Common use-case

Page 1647

By default these instructions affect the primary weapon equipped by the character. However if the character has

more than one weapon equipped, you can specify which weapon the trigger pull and release affects.

The most common way of instructing the player to shoot is by creating two Trigger components: * On Button Press:

This trigger uses the Pull Trigger instruction on the player. * On Button Release: This trigger uses the Release Trigger

instruction on the player.

For NPCs and enemies you can add a Wait for Seconds instruction between the pulling and releasing of the weapon's

trigger when aiming at their target(s).

1024.3 Reloading

To make a character reload their weapon(s) use the Reload Weapon instruction.

By default it reloads the primary weapon, but you can specify a particular one if your character has multiple weapons

equipped.

Common use-case

Page 1648

During the reloading phase, a character might attempt to perform a Quick-Reload action using the Try Quick-Reload

instruction. If the weapon being reloaded admits this feature, it will attempt it and shorten the reloading duration if

successful.

By default all Reload entries automatically attempt to reload when the character shoots with an empty weapon. The

Reload instruction is meant to be used either by more advanced enemy AI that decides the best time to reload or the

player.

You can create a Trigger that attempts to reload the player's weapon at any time when pressing the right button. If the

weapon cannot be reload, the command will simply be ignored.

1024.4 Jamming

If the Weapon's Jam section has a at least a chance to jam the weapon, it will eventually be jammed during

gameplay. A jammed weapon cannot be reloaded nor shot with unless the jam is fixed.

To do so use the Fix Jam instruction, which initiates an animation and fixes the jamming issue.

1024.5 Leaning

Characters can lean to the left or the right in order to shoot from corners. These leaning values are configured in the

Biomechanics section of the Sight assets.

To lean to one side use the Character Lean instruction, which will roll the character's spine towards one side (or the

other, if the angle is negative).

When to use Reload

Page 1649

To restore the value use the Character Lean instruction with a value of 0 degrees.

If the leaning is applied to the player and it is using an First Person camera shot, the camera will follow the leaning

along with its rotation.

Leaning with Cameras

Page 1650

VIII.III Visual Scripting

Page 1651

1025 Visual Scripting

The Shooter module symbiotically works with Game Creator and the rest of its modules using its visual scripting

tools.

Instructions

Conditions

Events

Each scripting node allows other modules to use any Shooter feature, and adds a list of Properties ready to be used

by other interactive elements.

Page 1652

VIII.III.I Conditions

Page 1653

1026 Conditions

1026.1 Sub Categories

Shooter

Page 1654

VIII.III.I.I Shooter

Page 1655

1027 Shooter

1027.1 Sub Categories

Jam

Shooting

Sights

1027.2 Conditions

Has Equipped Shooter

Page 1656

1028 Has Equipped Shooter

1028.1 Description

Returns true if the Character has a specific Shooter Weapon equipped

1028.2 Parameters

Name Description

Character The targeted Character

Weapon The Shooter Weapon to check if it is equipped

1028.3 Keywords

Combat Shooter

Shooter » Has Equipped Shooter

Page 1657

VIII.III.I.I.I JAM

Page 1658

1029 Jam

1029.1 Conditions

Is Jammed

Page 1659

1030 Is Jammed

1030.1 Description

Checks if the Shooter Weapon on a Character is jammed

1030.2 Parameters

Name Description

Character The Character reference with a Weapon equipped

Weapon The weapon to check

1030.3 Keywords

Shooter Combat Jam Malfunction

Shooter » Jam » Is Jammed

Page 1660

VIII.III.I.I.II SHOOTING

Page 1661

1031 Shooting

1031.1 Conditions

Is Pulling Trigger

Page 1662

1032 Is Pulling Trigger

1032.1 Description

Checks if the Character is pulling the trigger of a weapon and it's valid

1032.2 Parameters

Name Description

Character The Character reference with a Weapon equipped

Weapon The weapon to check

1032.3 Keywords

Shooter Combat Shoot Execute Trigger Press Blast

Shooter » Shooting » Is Pulling Trigger

Page 1663

VIII.III.I.I.III SIGHTS

Page 1664

1033 Sights

1033.1 Conditions

Has Sight Id

Is Sight Id

Page 1665

1034 Has Sight ID

1034.1 Description

Checks if the Character has a specific Sight on a Weapon

1034.2 Parameters

Name Description

Character The Character reference with a Weapon equipped

Weapon The weapon to check

1034.3 Keywords

Shooter Pose Aiming

Shooter » Sights » Has Sight ID

Page 1666

1035 Is Sight ID

1035.1 Description

Checks if the Character is currently in a specific Sight on a Weapon

1035.2 Parameters

Name Description

Character The Character reference with a Weapon equipped

Weapon The weapon to check

1035.3 Keywords

Shooter Pose Aiming

Shooter » Sights » Is Sight ID

Page 1667

VIII.III.II Events

Page 1668

1036 Events

1036.1 Sub Categories

Shooter

Page 1669

VIII.III.II.I Shooter

Page 1670

1037 Shooter

1037.1 Sub Categories

Wind

1037.2 Events

On Equip Weapon

On Shoot Hit

On Unequip Weapon

Page 1671

1038 On Equip Weapon

1038.1 Description

Executed when the Character equips a new Shooter Weapon

1038.2 Keywords

Equip Unsheathe Take Sword Shooter

Shooter » On Equip Weapon

Page 1672

1039 On Shoot Hit

1039.1 Description

Executed when a shot hits the collider on this Trigger

1039.2 Keywords

Fire Critical Gun Shot Impact

Shooter » On Shoot Hit

Page 1673

1040 On Unequip Weapon

1040.1 Description

Executed when the Character removes a new Shooter Weapon

1040.2 Keywords

Unequip sheathe Take Sword Shooter

Shooter » On Unequip Weapon

Page 1674

VIII.III.II.I.I WIND

Page 1675

1041 Wind

1041.1 Events

On Wind Change

Page 1676

1042 On Wind Change

1042.1 Description

Executed when the Wind force or direction changes

1042.2 Keywords

Wind Drift Force Air Storm

Shooter » Wind » On Wind Change

Page 1677

VIII.III.III Instructions

Page 1678

1043 Instructions

1043.1 Sub Categories

Shooter

Page 1679

VIII.III.III.I Shooter

Page 1680

1044 Shooter

1044.1 Sub Categories

Ammo

Equip

Jam

Reload

Shooting

Sights

Wind

Page 1681

VIII.III.III.I.I AMMO

Page 1682

1045 Ammo

1045.1 Instructions

Change Magazine

Change Munition

Page 1683

1046 Set Magazine

1046.1 Description

Changes the Magazine value of a particular Weapon on a Character

1046.2 Parameters

Name Description

Character The Character reference with a Weapon equipped

Weapon The weapon to reload the munition value

Magazine The new value for the Weapon's Magazine

1046.3 Keywords

Shooter Combat Ammo Load

Shooter » Ammo » Change Magazine

Page 1684

1047 Set Munition

1047.1 Description

Changes the Munition value of a particular Weapon on a Character

1047.2 Parameters

Name Description

Character The Character reference with a Weapon equipped

Weapon The weapon to reload the munition value

Munition The new value for the Weapon's Munition

1047.3 Keywords

Shooter Combat Ammo Load

Shooter » Ammo » Change Munition

Page 1685

VIII.III.III.I.II EQUIP

Page 1686

1048 Equip

1048.1 Instructions

Equip Shooter Weapon

Unequip Shooter Weapon

Page 1687

1049 Equip Shooter Weapon

1049.1 Description

Equips a Shooter Weapon on the targeted Character if possible

1049.2 Parameters

Name Description

Character The Character reference equipping the weapon

Weapon The weapon reference to equip

1049.3 Keywords

Shooter Combat

Shooter » Equip » Equip Shooter Weapon

Page 1688

1050 Unequip Shooter Weapon

1050.1 Description

Unequip a Shooter Weapon from the targeted Character if possible

1050.2 Parameters

Name Description

Character The Character reference unequipping the weapon

Weapon The weapon reference to unequip

1050.3 Keywords

Shooter Combat

Shooter » Equip » Unequip Shooter Weapon

Page 1689

VIII.III.III.I.III JAM

Page 1690

1051 Jam

1051.1 Instructions

Fix Jam

Jam

Page 1691

1052 Fix Jam

1052.1 Description

Attempts to fix a jammed Weapon

1052.2 Parameters

Name Description

Character The Character reference with a Weapon equipped

Weapon Optional field. The weapon to fix if there are more than one

1052.3 Keywords

Shooter Combat Fix Jammed Jamming Malfunction Feed

Shooter » Jam » Fix Jam

Page 1692

1053 Jam

1053.1 Description

Jams a Weapon on a Character

1053.2 Parameters

Name Description

Character The Character reference with a Weapon equipped

Weapon Optional field. The weapon to jam if there are more than one

1053.3 Keywords

Shooter Combat Fix Jammed Jamming Malfunction Feed

Shooter » Jam » Jam

Page 1693

VIII.III.III.I.IV RELOAD

Page 1694

1054 Reload

1054.1 Instructions

Eject Shell

Reload Weapon

Try Quick Reload

Page 1695

1055 Eject Shell

1055.1 Description

Ejects a Shell from the Weapon at the specified Weapon

1055.2 Parameters

Name Description

Character The Character reference with a Weapon equipped

Weapon Optional field. The weapon if there is more than one

1055.3 Keywords

Shooter Combat Reload Shell Cartridge Empty Casket

Shooter » Reload » Eject Shell

Page 1696

1056 Reload Weapon

1056.1 Description

Attempts to Reload a Shooter Weapon

1056.2 Parameters

Name Description

Character The Character reference with a Weapon equipped

Weapon Optional field. The weapon to Reload if there is more than one

1056.3 Keywords

Shooter Combat Ammo Load

Shooter » Reload » Reload Weapon

Page 1697

1057 Try Quick Reload

1057.1 Description

Attempts to Cancel the Reload during a Quick Reload phase

1057.2 Parameters

Name Description

Character The Character reference with a Weapon equipped

Weapon Optional field. The weapon to Quick Reload if there is more than one

1057.3 Keywords

Shooter Combat Ammo Load Quick Fast Skip

Shooter » Reload » Try Quick Reload

Page 1698

VIII.III.III.I.V SHOOTING

Page 1699

1058 Shooting

1058.1 Instructions

Pull Fire Trigger

Release Fire Trigger

Page 1700

1059 Pull Fire Trigger

1059.1 Description

Pulls the fire trigger on a shooter weapon

1059.2 Parameters

Name Description

Character The Character reference with a Weapon equipped

Weapon Optional field. The weapon to shoot if there are more than one

1059.3 Keywords

Shooter Combat Shoot Execute Trigger Press Blast

Shooter » Shooting » Pull Fire Trigger

Page 1701

1060 Release Fire Trigger

1060.1 Description

Releases the fire trigger on a shooter weapon

1060.2 Parameters

Name Description

Character The Character reference with a Weapon equipped

Weapon Optional field. The weapon to shoot if there are more than one

Shot ID Optional Shot type to fire. Uses the default Shot if empty

1060.3 Keywords

Shooter Combat Shoot Execute Trigger Press Blast

Shooter » Shooting » Release Fire Trigger

Page 1702

VIII.III.III.I.VI SIGHTS

Page 1703

1061 Sights

1061.1 Instructions

Character Lean

Set Default Sight

Set Sight Id

Page 1704

1062 Character Lean

1062.1 Description

Leans a character towards either side

1062.2 Parameters

Name Description

Character The Character reference with a Weapon equipped

Angle How much (in degrees) the Character leans

Speed How fast the Character leans

1062.3 Example 1

The Character must be a Humanoid

1062.4 Keywords

Shooter Peek Snap Corner Cover

Shooter » Sights » Character Lean

Page 1705

1063 Set Default Sight

1063.1 Description

Changes the to a new Sight of the specified Shooter Weapon

1063.2 Parameters

Name Description

Character The Character reference with a Weapon equipped

Weapon Optional field. The weapon to shoot if there are more than one

1063.3 Keywords

Shooter Combat Aim Scope Ease Draw Holster

Shooter » Sights » Set Default Sight

Page 1706

1064 Set Sight ID

1064.1 Description

Changes the to a new Sight of the specified Shooter Weapon

1064.2 Parameters

Name Description

Character The Character reference with a Weapon equipped

Weapon Optional field. The weapon to shoot if there are more than one

Sight ID The new Sight ID to use

1064.3 Keywords

Shooter Combat Aim Scope Ease Draw Holster

Shooter » Sights » Set Sight ID

Page 1707

VIII.III.III.I.VII WIND

Page 1708

1065 Wind

1065.1 Instructions

Change Wind Direction

Change Wind Magnitude

Change Wind

Page 1709

1066 Change Wind Direction

1066.1 Description

Changes the wind direction keeping its current magnitude

1066.2 Parameters

Name Description

Direction The new direction of the wind

1066.3 Keywords

Wind Drift Force Air Storm

Shooter » Wind » Change Wind Direction

Page 1710

1067 Change Wind Magnitude

1067.1 Description

Changes the force of the Wind keeping its current direction

1067.2 Parameters

Name Description

Force The new force of the wind

1067.3 Keywords

Wind Drift Force Air Storm

Shooter » Wind » Change Wind Magnitude

Page 1711

1068 Change Wind

1068.1 Description

Changes the Direction and Force of the Wind

1068.2 Parameters

Name Description

Direction The new normalized direction of the wind in world space

Force The new force of the wind

1068.3 Keywords

Wind Drift Force Air Storm

Shooter » Wind » Change Wind

Page 1712

VIII.IV Releases

Page 1713

1069 Releases

1069.1 2.1.3

New

Aim: Pointer onto Raycast for top-down and side-scrollers

Weapon: Power value under Fire section for Reactions

Weapon: Projectiles have optional Impact Effect spawner

Instruction: Set Weapon Munition on Character

Instruction: Set Weapon Magazine on Character

Condition: Has Weapon Equipped

Event: On Character equip Shooter Weapon

Event: On Character unequip Shooter Weapon

Property: Get Shooter Weapon from Variables

Property: Last Weapon shot

Property: Last Weapon Prop shot

Property: Last Muzzle position and direction shot

Property: Last Projectile Hit

Property: Last Shot charge ratio

Property: Last Shot total distance

Property: Last Shot number of pierces

Enhances

Editor: Hide empty IK Biomechanic options

Examples: Sights with Scopes have offset for head

Changes

Unity: Support for Unity 6

Fixes

Weapon: Loop Audio stops when unequipping Weapon

1069.2 2.0.2

(Latest)

Released October 18, 2024

Page 1714

Fixes

Examples: Error installing demo samples

1069.3 2.0.1

New

First release

Released August 9, 2024

Released August 9, 2024

Page 1715

IX. Melee

Page 1716

1070 Melee

Creating a deep combat system requires much more than playing animations and detecting what enemies pass

through the blade of the attacker.

The Melee module aims to provide a generic framework to build your own combat system, whether it's a methodical

and deliberate or fast paced with crazy combos.

Get Melee

The Melee module is an extension of Game Creator 2 and won't work without it

Requirements

https://gamecreator.link/melee
https://gamecreator.link/core

Page 1717

1071 Setup

Welcome to getting started with the Melee module. In this section you'll learn how to install this module and get

started with the examples which it comes with.

1071.1 Prepare your Project

Before installing the Melee module, you'll need to either create a new Unity project or open an existing one.

It is important to note that Game Creator should be present before attempting to install any module.

1071.2 Install the Melee module

If you haven't purchased the Melee module, head to the Asset Store product page and follow the steps to get a copy

of this module.

Once you have bought it, click on Window → Package Manager to reveal a window with all your available assets.

Type in the little search field the name of this package and it will prompt you to download and install the latest stable

version. Follow the steps and wait till Unity finishes compiling your project.

1071.3 Examples

We highly recommend checking the examples that come with the Melee module. To install them, click on the Game

Creator dropdown from the top toolbar and then the Install option.

The Installer window will appear and you'll be able to manage all examples and template assets you have in your

project.

Examples: A collection of scenes with different use-case scenarios

Brawl: A deliberate and realistic combat system where characters fight with punches and kicks similar to Souls-

like games

Sword: A more complex and free-flow combat system with fast-paced animations similar to Devil May Cry and

Kingdom Hearts

Sword FPS: A simple combat system tailored to first-person view

Game Creator

Page 1718

The Examples requires all combat systems in order to work.

Clicking on the Examples install button will install all dependencies automatically.

Once you have the examples installed, click on the Select button or navigate to

Plugins/GameCreator/Installs/Melee.Examples/ .

Dependencies

Page 1719

Page 1720

1072 Weapons

When a Character has a Weapon equipped, it can be used to execute Skills using the Combo asset defined and the

Input fed or directly using the Play Skill instruction.

1072.1 The Weapon Asset

To create a new Weapon asset, right click on the Project Panel and select Create → Game Creator → Melee →

Weapon.

Page 1721

Title and Description allow to give it a name and description, which can later be used to display on the user

interface. Icon and Color provide similar functionality for changing the graphic and its tint color.

Weapons are identified by their unique ID value, not by the asset name. Make sure all your weapons have a unique ID

value!

1072.1.1 Shields & Reactions

Give it a unique ID

Page 1722

The Shield field is only necessary if you're using any kind of blocking mechanic. How blocking attacks work is

covered more in depth in the Shields section.

The Hit Reaction and Parried Reaction fields allow to define a Reaction asset that plays an animation when the

character gets hit or its attack is parried by another character.

1072.1.2 States

When a Weapon is equipped, the character using it can automatically switch to the defined animation State. This

allows, for example, to hold a sword with the right hand when equipping a Sword Weapon and change the gait when

wielding it.

It's very important to be conscious about the State Layer field! By default, all characters equipping a weapon will use

the layer index 5 as the layer index. Shields use the layer index 7, which is two units higher than the Weapon layer index

so that the blocking state overrides the weapon one during that state. Layer 6, by default, is reserved for Charged Skills.

1072.1.3 Combos

The Combos field allows to define which Skills will be executed under which conditions when inputting Charge and

Execute commands (see Input for more information).

There are two ways to define the Combos of a weapon: Using a Combo reference asset, or embedding one directly.

State Layer

Page 1723

We recommend using Combo asset references when possible as they are more flexible and allow to reuse the same

move-sets for multiple weapons. However if you're certain you'll only use one move-set for a particular weapon, you can

embed it directly and save up space in your project folder.

To embed a Combo directly you can use the Embedded option and the field below will turn into a Combo Tree where

you can define the order and conditions in which attacks are executed.

1072.1.4 Instructions

The On Equip instructions are executed whenever this Weapon is equipped by a Character. This is the perfect place

to instantiate and attach a prop representing the weapon onto the targeted character.

The On Unequip instructions are executed when the Weapon is unequipped by the Character.

The On Dodge instructions are executed when the Weapon wielder dashes through an attack and is invulnerable

during those frames.

Use Combo references

Page 1724

1073 Shields

Shields are optional assets that allow to block incoming attacks.

Because there is no standard nomenclature throughout all games we decided to pick the following terms. However you

can choose to name them in your game as you see fit:

Block: Stop any incoming attack while shielding that isn't a Parry.

Parry: Stop an attack where the time window between raising the shield and blocking is shorter than a certain

amount. Some games call this Deflect or Perfect Blocking.

Break: Whenever the defense position of a character is broken, due to receiving too many impacts.

1073.1 The Shield Asset

To create a new Shield asset, right click on the Project Panel and select Create → Game Creator → Melee → Shield.

Blocking, Parrying and Breaking

Page 1725

1073.1.1 Defense

The upper-most values determine how the weapon can defend from incoming attacks.

Page 1726

The Angle field determines how aligned must the character be towards the attack in order to block it, starting from

the front. For example, if the angle is 180 degrees, the character will defend from any attack that comes from the

front and sides. A value of 360 will block any attacks from any direction.

The Parry Time field determines the maximum time window, in seconds, between the block starts and an attack

connects to be considered a Parry. If the time between raising the shield and blocking the attack is higher than this

value, it will be considered a normal Block.

The Defense value is a number that decreases with each blocked attack. If the value reaches zero, the defense will

be broken and any other attack will hit the Character.

Page 1727

To visualize the current Defense of a character, enter Play Mode and select the character. Once a weapon is equipped, a

few new fields will appear at the end showcasing the currently equipped weapons and combat values.

The Cooldown determines how long it takes to start recovering Defense after decreasing it from a blocked attack.

The Recovery field determines the pace at which Defense is recovered, in seconds. For example, a value of 2 means

it will recover 2 units per second.

1073.1.2 States

A Shield allows to change the animation State of the character when rising the shield and stop it automatically when

lowering the defense.

Visualizing the Defense value

Page 1728

It's very important to be conscious about the State Layer field! By default, all characters equipping a weapon will use

the layer index 5 as the layer index. Shields use the layer index 7, which is two units higher than the Weapon layer index

so that the blocking state overrides the weapon one during that state. Layer 6, by default, is reserved for Charged Skills.

The Speed field allows to run the whole State animations faster or slower using a coefficient. A value of 1 means the

animation will run normally and a value of 0.5 means the animations will be in slow-motion.

Transition In and Transition Out fields determine the time in seconds it takes to blend into the state. We recommend

using small values, between 0.1 and 0.5 seconds.

1073.1.3 Blocking

Blocking happens whenever the character blocks an incoming attack that isn't perfectly blocked (also known as

parried).

The Block Reaction field allows to play an animation gesture when blocking an attack. See Reactions for more

information.

The Effect field allows to instantiate a prefab at the point of impact. For example, a particle effect that highlights the

blocking.

The On Block instructions are executed every time an attack is blocked, regardless of the type of attack. When these

instructions are executed, Self refers to the character blocking the attack, and Target to the attacker.

1073.1.4 Parrying

Parrying happens whenever the character blocks an incoming attack and the time between raising the shield and the

impact is less than a certain amount of time. This mechanic is also commonly known as perfect blocking.

State Layer

Page 1729

The Parry Reaction field allows to play an animation gesture when parrying an attack. See Reactions for more

information.

The Effect field allows to instantiate a prefab at the point of impact. For example, a particle effect that highlights the

parry.

The On Parry instructions are executed every time an attack is parried, regardless of the type of attack. When these

instructions are executed, Self refers to the character blocking the attack, and Target to the attacker.

1073.1.5 Breaking

Breaking happens whenever the character's blocking defense is broken. When a character starts blocking, it has a

defense gauge that decreases with every attack blocked. If the gauge value reaches zero, the defense becomes

broken and the character is open to attacks.

The Break Reaction field allows to play an animation gesture when the defense is broken. See Reactions for more

information.

The Effect field allows to instantiate a prefab at the point of impact. For example, a particle effect that highlights the

point where the defense is broken.

The On Break instructions are executed every time the defense is broken, regardless of the type of attack. When

these instructions are executed, Self refers to the character blocking the attack, and Target to the attacker.

Page 1730

IX.I Skills

Page 1731

1074 Skills

Skills are assets that define an action performed by a character.

The most common use-case of a Skill is a single attack, but it can also be a synchronized takedown, an attack

cutscene or even a non-attack animation.

1074.1 The Skill Asset

To create a new Skill asset, right click on the Project Panel and select Create → Game Creator → Melee → Skill.

The Skill asset is a very complex one. This page goes over each one of its parts without much detail. There will be a

link annexed to each sub-section that deep-dives into its features.

Wide range of use-cases

Asset Complexity

Page 1732

Page 1733

Title and Description fields allow to optionally give the skill a name and an explanation about what it does. These

values, along with Icon and Color are used to display information on the user interface.

1074.1.1 Charge

The Charge section defines the behavior of the skill when using it as a charge. A charge happens when the character

holds a pose during a certain amount of time before executing the animation and its effects.

The Charge section allows to specify an animation State that the character enters before executing the Skill.

For more information about Charged Attacks, see the Charges section.

1074.1.2 Strike

The Strike section is relevant for Skills that deal damage to other characters.

The Direction field determines the direction, from the attacker's perspective, in which the Skill affects the enemy.

The Predictions field allows to define how many inter-frame physics predictions are performed. In most cases, a

single prediction should be enough. However if the animations are so fast that the weapon ghosts-through enemies,

this value can be fine-tuned until the attack detects all possible enemies.

More Information

Page 1734

The Use Strikers dropdown allows to define which weapon Strikers to use. This is especially useful if your game

allows to equip multiple weapons and you only want one of them to hit enemies during this attack.

For more information about Strikes and how to configure them, see the Strikes sub-section.

1074.1.3 Trail

The Trail section allows to override the default trail left by Strikers when attacking an enemy. Each checkbox allows

to change the value of the trail option.

For more information about Trails and what each option does, see the Striker's Trail section.

1074.1.4 Effects

The Effects section allows to define what happens when the Skill is used.

For example, the Sound fields allow playing sound effects when using, hitting, getting blocked and parried.

More Information

More Information

Page 1735

In order to avoid playing the exact same sound effect over and over again, Melee 2 sound effects have a slight random

pitch variation.

The Hit Pause checkbox enables hit-pause (also known as Hit Freeze) when the Skill successfully hits something.

Time Scale determines the time coefficient at which time slows during the hit.

Delay allows to introduce an unscaled time delay. This is useful if you want to slow time after a slash to showcase

the trail better.

Duration is the unscaled time in seconds that the hit-pause effect takes effect.

The Hit Effect field allows to instantiate a prefab object at the point of impact after a successful hit.

1074.1.5 Sequencer

The Sequencer is the most important section of a Skill. It determines the animation played and all the events that

are executed when it plays.

Sound Variation

Page 1736

The Animation field is required in order to run a Skill. It will play an animation using the Gestures system from the

character and allows to attach events and phases in the timeline tool below.

An Avatar Mask can also be provided in order to play the animation on certain bones of the character. For example,

slash with a sword with the right hand while letting the rest of the body play the locomotion animation.

Gravity determines how strong the downward force on a character is when executing the Skill. The most common

scenario will have a value of 1, where the character is affected by gravity. However, if the Skill allows the character to

jump, reducing or setting the gravity value to zero will help the character snap out of the ground.

The Transition In and Transition Out fields allow to define the blend-time between the character's current animation

and the Skill's animation. It's recommended to use small values such as 0.1 or 0.3.

The Motion field defines the type of motion the character will use when playing the Skill. There are three possible

values:

None: The Skill doesn't take over the motion of the character and it's free to move as it plays out.

Root Motion: The Skill overrides the character's locomotion and uses the animation clip's root motion.

Motion Warping: Similar to root motion, but also allows to define a range in which the character interpolates its

position and rotation towards a destination.

For a complete deep-dive into Motion's details, see the Motion page.

The Enter Skill Mode button allows to preview the animation on the scene-view and tweak the different Phases and

Motion values from the Sequencer below.

Once in Skill Mode the default character will appear on the screen and the animation can be previewed by scrubbing

the timeline below.

Information about Motion

Page 1737

You can change the character model by dragging and dropping your own model onto the corresponding field and

clicking the Change Model button. The Skill will remember which model is used for this one.

For a complete deep-dive into the Sequencer's options, see the Sequence page.

The three Speed fields allow to determine the speed coefficient of each one of the Attack Phases. If the Skill doesn't

have any attack phases, the Anticipation Speed will be used as a coefficient of the animation's speed.

A value of 1 means the animation plays at its normal rate, while a value of 2 means it will play twice as fast.

1074.1.6 Poise

A Skill has two Poise values:

Poise Armor: Determines the poise defense value when a character uses this Skill.

Poise Damage: Determines the poise damage it inflicts when a character uses this Skill.

When a character starts executing a Skill it starts with its full Poise Armor value. If during the execution of the Skill it

receives an attack, it will get its armor damaged by the attacker's Poise Damage skill value.

If after receiving an attack its Poise Armor reaches zero, the current Skill will be interrupted and a Hit Reaction will be

played instead.

For a complete deep-dive into the Poise system, see the Poise page.

Character Model

Information about Sequencer

Information about Poise

Page 1738

1074.1.7 Power

The Power of a Skill can be used to play different animations depending on its strength. For example, a normal

attack could have a value of 1 while a powerful blunt attack could have a value of 2.

These values can be used in the Reaction assets to play a different reaction in each case. For example, the normal

attack could execute a small flinch while the powerful blunt attack could make the victim play a knock-back

animation.

1074.1.8 Instructions

There are three Instruction Lists called under different circumstances:

On Start: These instructions are called as soon as the Skill starts to play. The Self value references the character

playing the skill.

On End: These instructions are called whenever the Skill stops playing, even if it's interrupted by a poise-break or

another skill.

On Hit: These instructions are called whenever the Skill lands a successful attack onto another character. The Self

value references the character attacking and Target references the victim.

The On Hit instruction list is the perfect place to deal damage to the enemy, either using a Formula from the Stats

module or using Local Variables.

1074.2 Running Skills

At any given point a Skill can be forced on a character using the Play Melee Skill instruction.

Dealing Damage

Page 1739

All you need to specify is the character that's going to play the Skill and information necessary for the correct

execution.

Page 1740

1075 Charges

The Skill asset allows to very easily define Charged Attacks.

When a Charge skill starts it will enter an animation State which may (or may not) change the character's locomotion

properties.

In this example, the player holds the left mouse button and the character enters a sheathed state in which it can't move.

Upon releasing the button, the character performs the Skill attack.

It's important to note that the Combo asset defines whether a Skill is a charged one or not.

Charging a Slash

Page 1741

When selecting the Charge option from the Combo asset, you'll be prompted whether to auto-release the Skill after

the minimum charge or let the user specify when to release it.

It will also allow to define the minimum amount of time to charge the attack in order to have any effect.

For more information about Combos, see the Combos section.

More about Combos

Page 1742

1076 Strikes

When a character attacks with a Skill there is a phase called Strike in which the current weapon(s) collect any hit

enemies and pass the information to the Skill in order to determine if each of the enemies hit was successful,

blocked, parried or ignored.

Upon entering the Strike phase, the Skill looks up all the Striker components of the weapon object(s) and gathers

any overlapping enemies.

If the character has equipped more than one weapon and the Skill requires one of them to hit the enemies, you can

specify the ID of the Striker by changing the dropdown value from All to By ID.

A new ID field will appear below where the Striker id value can be specified

1076.1 The Striker Component

Strikers are components attached to game objects (usually props that represent weapons) that detect hit enemies

when the character attacks.

Using multiple Weapons

Page 1743

The ID allows to hand-pick Strikers by their unique identifier in each Skill.

The Section game object reference allows to define where the Blade of the weapon is. By default, it should be the

game object where the Striker component is attached to, but some weapons, like a whip, might require mobile parts

to work as the hitting part.

Page 1744

The Shape dropdown allows to define the shape of the physics volume that captures enemies when passing through

them. There are different options:

Sphere: The most basic shape. It captures enemies within a defined radius.

Capsule: A pill-like shape that captures enemies along its length and is defined by a radius and a height value.

The Trail section defines two points in which a trail is drawn whenever the weapon is used during a Strike phase.

It also determines the maximum amount of Quads allowed to draw the trail mesh, it's total Length and the Material

used.

Page 1745

1076.2 The Trail

When a Skill enters the Strike phase, all Striker components that are involved start drawing the Trail effect, which is

automatically faded upon finishing the phase.

The Trail is drawn using a Catmull-Rom spline with regular intervals so that it looks smooth regardless of the speed

at which the animation plays.

Point A and Point B define the segment from which the trail will be drawn.

Page 1746

During play-mode you can visualize the Trail by selecting the character executing the Skill. It will automatically draw the

quads on top of the trail's material so you can visually see whether that particular skill needs more or less quads in

order to look good.

1076.3 Predictions

When capturing enemies that the weapon passes through there is a chance that enemies ghost-through if the Striker

shape is very small and the animation plays very fast.

The Predictions field allows to determine inter-frame physics casts that are performed each frame to avoid this

problem.

For example, setting a value of 5 means it will capsule-cast 5 times every frame between the weapon position at the

last frame and the current one. You can visualize the predictions by selecting the character executing the skill and

seeing how each colored volume appears:

Visualize the Trail

Page 1747

Green Volume: Shows the current frame weapon's cast volume position.

Blue Volume: Shows the predicted volumes positions.

While it's easy to increase the number of predictions to minimize the chance of ghosting-through enemies, each

prediction has a direct performance impact on the physics engine. It's better to keep them at a minimum if there are

going to be lots of enemies fighting at the same time.

Performance Toll

Page 1748

1077 Motion

The Motion field determines how the character moves when the Skill is executed. There are three possible values:

None: The Skill doesn't take over the motion of the character and who's free to move as it plays out.

Root Motion: The Skill overrides the character's locomotion and uses the animation clip's root motion.

Motion Warping: Similar to root motion, but also allows to define a range in which the character interpolates its

position and rotation towards a destination.

1077.1 None

Setting the Motion value to None allows the character to move normally during the execution of the Skill.

This is useful if you have an upper-body Avatar Mask masking the lower-body so that the attack animation only plays

on the torso and arms, but not on the legs. This allows the character to move while attacking.

1077.2 Root Motion

Selecting the Root Motion option allows the Skill to take over the character's control for the duration of the

animation, translating and rotating it using its root motion values. This allows very fine-grain control over how far the

character moves during an attack combo and where it ends up looking.

Page 1749

Switching to Root Motion also adds two new tracks onto the Sequence timeline: One with the letter P, which stands

for Position, and another one with the letter R, which stands for Rotation.

These sliders define a range where the root motion doesn't take effect onto the character's animation.

For example, let's say you have a Skill where the character curls the weapon close to itself for a couple of seconds

before launching forward.

If you were not to use the sliders, the character would not be able to track the enemy during the Anticipation frames and

they could simply slightly step out of the way of the attack.

Using the Rotation slider one can let the character pivot around itself during the first frames in order to keep tracking

the enemy during the Anticipation frames, before sling-shotting itself towards the enemy.

1077.3 Motion Warp

Using Root Motion sliders

Page 1750

The Motion Warp also uses the root motion animation of the character, but instead of allowing to define the position

and rotation frames at which the Skill takes over the locomotion control of the character, it defines a warp range

during which the character will smoothly change its position towards the targeted one.

Page 1751

The Warp slider is useful for combat systems that require characters to snap towards enemies, like in Kingdom Hearts,

Batman Arkham game series or Spiderman.

At the beginning of each attack, the character attempts to close in the distance to the enemy during a few frames. The

distance amount and skill used depends on how far the character is from its target.

The Warp slider can be selected to reveal option settings to configure how the warp is performed.

The Conditions list at the top allows to check whether the warp should happen or not. The most common use-case

is checking whether there is a target available or not.

The Easing field specifies the easing curve used when moving the character from its starting position to its

destination.

Self and Target fields define the final position of both the character executing the Skill (Self) and the targeted

character receiving the attack (Target).

Using the Warp slider

Page 1752

For both Self and Target locations, we recommend using the values found under the Melee section.

There is a collection of options, each with its own description of what it does. The most useful ones are:

Self/Target Close: Moves the character close to the target, keeping a specified distance, in a straight line. This is

mostly used to close-in an attack.

Look at Self/Target: Rotates the character towards the target. Useful for synchronizing takedown attacks.

The rest of the options allow moving the character at each cardinal position of the opponent.

If you don't want either the Target or Self to change its location, simply set the value to None.

Selecting Motion Warp also adds a new field called Sync Reaction. This option allows to play a synchronized

animation onto the Target character along with the Skill. This is especially useful when performing takedowns or

playing animations that require enemies to react in a certain way.

Using Melee Locations

Page 1753

In the video above, the unaware enemy plays a Takedown animation as soon as the Skill starts. In order to synchronize

the position of both the attacker and the victim, the Warp slider defines the following:

Takedown Skill

Page 1754

The Self character (which is the attacker) moves in close to the enemy, keeping a distance of 1.5 units.

The Target character (which is the victim) simply looks at the attacker.

These values allow to define a sync point at which the animation can play synchronized animation on both characters

that looks seamless.

Page 1755

1078 Sequence

The Skill asset contains a sequencing timeline tool called Sequencer that allows to configure every little detail that

happens during the execution of the animation.

To edit the Sequencer, click on the Enter Skill Mode button. The Scene View and Hierarchy Panel will change its

appearance to one similar to when editing a prefab.

Entering into Skill Mode displays the default character at the center of the screen with nothing else. This character is

automatically bound to the sequencer, which you can scrub to play the animation forward and backwards, frame by

frame.

To change the preview character model, simply drag and drop the model onto the corresponding field and click on the

Change Character button. This will change the model for this particular scene and it will remember to use it in the

future.

1078.1 Sequencer Anatomy

The Sequencer is composed of horizontal Tracks and each one defines information using Clips, which are the little

rhomboids that can be dragged along the timeline.

Change Character

Page 1756

On the left side of each Track there's a rhomboid with a minus sign and on the right side, there's a similar one with a

plus. Each of these buttons allow to remove or add a new Clip at the position of the play-head.

Each Track allows to create or remove different amounts of clips. When it's not possible to add new ones, the buttons

will be grayed out.

The Skill Sequencer has three different Tracks by default:

Attack Phases Track: This determines the Anticipation, Strike and Recovery phases of any attack.

Animation Cancel Track: Determines which frames the Skill can be canceled by another action.

Instructions Track: Allows to execute Instructions at different points of the timeline.

Setting the Motion of the Skill to either Root Motion or Motion Warp will add other tracks to the Sequencer. These ones

are covered in their corresponding section under Motion.

1078.2 Attack Phases

When executing any Skill that is an attack, there will always be three phases:

Anticipation: Also known as wind-up. In this phase, the character prepares to execute an attack.

Strike: Also known as activation. In this phase, any enemies passing through the edge of the weapon will be hit.

Recovery: Also known as follow-through. In this phase the character is exposed to enemy attacks.

Track Behavior

Root Motion and Motion Warp Tracks

Page 1757

When executing an attack that is the follow-up of another one (known as combo), the Recovery phase of the first attack

is skipped in favor of the anticipation of the new one. This makes combos feel faster and more responsive, without

having to wait to idle the pose before starting the new attack.

1078.3 Animation Canceling

The Animation Canceling track determines at which frames the user can cancel the Skill in order to execute

something else.

The red portion of the Track are the frames that the character isn't allowed to cancel. This means that the character

may be able to cancel the start and/or the end of the animation.

Some games allow to cancel the start of an attack using the block during the first few frames of an attack. This can be

easily done by dragging the start of the Animation Canceling Clip a few frames from the start.

Chaining Combos

Executing a Faint

Page 1758

Some games also allow to cancel the recovery phase of an attack using a roll. This can be easily done by leaving some

empty space between the end-clip of the Animation Canceling Clip and the last frame of the track.

1078.4 Instructions

The Sequencer allows to run arbitrary Instructions at any frame of the Skill animation.

To add a new Instruction list, simply move the play-head at the frame you want to do something and click the right-

most plus button from the Instructions track. Select the new Clip that appears to reveal the Instructions list below,

where you can create any logic that will run at that point in time.

Note that a Skill can be canceled at any point and thus some Instructions won't be executed if these are further away in

time from the canceling point. Do not run critical logic in this Track. Instead, use the On Start and On End instructions

callback, which are guaranteed to run, even if the Skill is canceled.

Roll Cancel

Canceling Skills

Page 1759

1079 Poise

The Poise refers to the ability of a character to withstand other attacks during the execution of a Skill without

canceling it.

In some games, this is also known as Hyper-Armor.

When a character starts playing a Skill, its Poise Armor is filled. If during the execution of this Skill the character

receives any attack from an enemy, the Poise Armor will be reduced by the Poise Damage of the enemy's Skill.

Any subsequent attacks will also damage the Poise Armor. If it reaches zero or less, the character's Skill will be

automatically canceled at that frame and will play a Hit Reaction.

By default, all Skills have a Poise Armor of 1 and a Poise Damage of also 1 unit. This means that any attack can be

interrupted by an enemy's attack. If you want an enemy to withstand more than one attack, increase the Damage

Armor.

The Poise value of a character can be visualized at runtime by simply selecting the character object and looking at

the Inspector window.

Hyper-Armor

Default Poise

Page 1760

At the very bottom of the character component, there's a Poise gauge that is filled whenever the character executes

a Skill. This gauge diminishes with each attack received.

Page 1761

1080 Reactions

The Reaction assets allow characters to react to different stimulus, such as being hit, blocking an attack, being the

victim of a takedown, etc... It allows to define a list of Animation Clips and one of them is picked based on different

conditions.

For example, a character being attacked from the front might play a random flinch animation, but the same attack

hitting its back might make it stumble or even get knocked down.

1080.1 The Reaction Asset

To create a new Reaction asset, right click on the Project Panel and select Create → Game Creator → Melee →

Reaction.

The Reaction asset has a Transition In and a Transition Out field that define how long it takes for a character to

blend in and out the selected animation from the reaction. It is recommended to have small values, such as 0.1 up to

0.5 seconds.

The Use Root Motion checkbox defines whether the animation being played takes over the character's locomotion

and will use the animation clip's root motion to move the character. In most cases, this checkbox should be checked.

The Speed field is a coefficient that is used to speed up or down the animation played. By default it's set to 1, which

indicates that the animation will play at its original velocity. Setting a value of 2 means the animation will play twice

as fast, and a value of 0.5 will play the animation in slow-motion.

Page 1762

Clicking on the Add Reaction button creates a new entry, of which you can create as many as needed.

When a Reaction decides which animation is played, it starts checking all entries, from top to bottom. If the

conditions of an entry are successful, then the animation played is picked randomly between the ones provided by

that entry.

1080.1.1 Entry Conditions

The Min Power checkbox determines whether the entry requires a minimum power in order to be considered

successful. Upon ticking the toggle, a decimal field appears on the right side, which is used to define the minimum

power threshold.

The power is provided by the attacker's Skill. This allows to play different hit reactions depending on the power of the

attack received, and playing a knock-back animation when the strength of the attack taken is higher than a certain

value.

The Direction field allows to execute a particular entry only if the direction of the attack received matches the

direction of the attack. The From Any option ignores the direction of the skill.

On top of these conditions, you can also specify visual scripting Conditions such as checking stats, and other kinds

of data from both the attacker and the victim.

Power from Skills

Page 1763

When checking Conditions the Self value references the character attempting to play a Reaction and the Target the

attacker character.

1080.1.2 Entry Behavior

The Cancel Time toggle allows to define a maximum time at which the character playing the Reaction can cancel the

reaction and play another Skill, dash or do any other action.

A Stun Lock is what happens when all attacks of an attacker character are faster than the reaction animation of its

victim. If the aggressor constantly attacks a character, it can't break free because each new attack locks it in a new

flinching animation.

To avoid that, try ticking the Cancel Time checkbox and give it a small threshold time. This will allow characters to

attempt dashing out of the way after being hit but won't allow them to move during the reaction time.

This is especially useful for the player character.

The Rotation field allows the character to either look away from the attack direction, towards the attack direction or

not rotate the character at all. This is usually useful when all your animations are frontal ones and you don't want to

create directional animations.

Gravity determines the influence this reaction entry will have on the character's own gravity. This is mostly used

when doing airborne hit reactions, where the character stays up in the air while playing the hit animation.

The Avatar Mask allows to play the entry animation clips on just a few bones.

The Animation Clip list below determines all animation clips that are part of this Reaction Entry. If the conditions are

successful, a random clip will be picked (without repetition) from the list.

1080.1.3 Instructions

A Reaction asset also allows to execute Instructions upon starting and/or exiting the animation. These instructions

are guaranteed to be executed, even if the Reaction being played is canceled.

The On Enter instructions play as soon as the animation starts playing.

The On Exit instructions play as soon as the animation stops, or the reaction is canceled.

1080.2 Running Reactions

At any given point a Reaction can be forced on a character using the Play Melee Reaction instruction.

Self and Target

Stun Locks

Page 1764

All you need to specify is the character that's going to play the Reaction and information necessary for the correct

selection of the entry.

Page 1765

1081 Combos

Combos define the order in which Skills are executed using different inputs and conditions.

A Combo can be either defined as a separate asset or embedded onto the Weapon itself, although we recommend

the first option in order to reuse the same combos for multiple weapons.

1081.1 Combo Asset

To create a new Reaction asset, right click on the Project Panel and select Create → Game Creator → Melee →

Combo.

Page 1766

1081.2 Combo Anatomy

A Combo asset or embedded value have both the exact same layout:

A left panel with a tree-like structure that defines each Combo entry.

A right panel that displays more information and options for the selected Combo entry.

Combos are executed from top to bottom, and upon successfully validating an entry from the left panel, that Skill is

executed.

Combo entries can be nested into other Combo entries in order to create attack combos. For example, having a Light

Attack 2 under the Light Attack 1 entry will allow to execute the second attack right after finishing the first attack, and

skipping the Recovery Phase.

To reorder Combo entries, simply drag and drop the entry from the left panel where you want it to go. Dropping an

entry onto another entry will add it as a child of it.

1081.2.1 Combo Input

The first fields allow to define the input type of a particular Combo entry. There are 8 possible keys to use and 2

modes: Tap and Charged Skills.

Tap: Tap skills are executed as soon as the Execute input is detected and don't require any waiting time.

Charge: Skills start being charged as soon as the Charge input is detected and fully execute when the Execute

input is input.

Page 1767

For more information about input commands, see the Input section.

If the Charge option is selected, two fields will be revealed below:

Timeout: The minimum amount of time it needs to pass before the charge can be executed.

Auto Release: Whether the charge can be hold indefinitely or should it execute as soon as the minimum timeout

expires.

In both Charged and Tap inputs there's another checkbox field called Has Delay. This field is only available when the

combo entry is a child of another combo entry and requires the Execute input to happen after a delay.

Delayed inputs usually execute much more powerful attacks but require precise timing. Hence why these are usually

only used by seasoned players that don't button-mash the controller. For example, Devil May Cry was one of the first

action games to make use of delayed input attacks.

1081.2.2 Combo Execution

The Conditions list at each Combo entry allows to determine whether this entry should be executed or not.

A common use-case of Conditions inside Combo entries is when the character executes different attack animations

when being airborne or grounded.

The Execution Order defines whether the Combo entry is taken into account in order (option In Order), or it can

interrupt any combo chain (option Anytime).

More about Input

Delayed Input Commands

When to use Conditions

Page 1768

Combo entries that are marked as Anytime can run even when the character is playing a combo attack.

The last field in the Combo entry is the Skill itself, which is required in order to execute it.

Interrupting Combos with Skills

Page 1769

1082 Input

There are two ways to execute Skills:

Using the Play Melee Skill instruction.

Using the Input mechanism and let the Combo decide which Skill to play.

This section focuses on the second one.

1082.1 How to Input

When a character has at least one Weapon equipped with a Combo asset or embedded value, it is ready to receive

input commands, and its combat module will decide whether it can play a Skill and which one to run.

There are two instructions to feed characters with:

Input Charge Instruction should be executed when pressing an attack button/key

Input Execute Instruction should be executed when releasing an attack button/key

If your game does not have any charged attacks you might prefer executing the Input Execute directly upon pressing

the key, instead of the release, and skipping the Input Charge. This will make the controls feel snappier and responsive,

but on the other hand, you won't be able to charge attacks.

The Input mechanism has been engineered to support multi-platforms out of the box. There are 8 abstract bindable

keys which are called A, B, C, ... all the way to H.

No Charge? No Problem

Page 1770

To allow multi-platform support, simply use Triggers that execute each of the abstract keys from different inputs.

For example, to support both Keyboard and Gamepad controllers, you can use the following Triggers for Keyboards:

Trigger On Mouse Press [Left Button]: Charge Input A on Player

Trigger On Mouse Release [Left Button]: Execute Input A on Player

And also add the following Triggers for gamepads:

Trigger On Gamepad Press [Square Button]: Charge Input A on Player

Trigger On Gamepad Release [Square Button]: Execute Input A on Player

1082.2 Input Buffer

The Input mechanism supports a technique called input buffering which allows players to input their commands with

a slight time window error margin before executing the Skills from the input keys.

For example, let's say the player is doing a 3-hit light attack combo. The first time they press the A key, the player

character starts playing the skill Light Attack 1, which takes around 1 second to execute.

However, around 0.75 seconds have passed, the player presses the A key again to send the command to do a follow-up

Light Attack 2 skill. However, because the first attack hasn't finished, without input buffering the second attack would

never start.

With input buffering the input keys are remembered for a maximum amount of time before being consumed.

The Input Buffer window duration can be changed at any time using the Set Buffer Window instruction.

Keyboard and Gamepads

Input Buffer for Combos

Page 1771

By default it uses a 0.5 seconds window, but if you feel that's too much, you can easily change it with the

aforementioned instruction.

Page 1772

1083 Targets

Characters can focus on a targeted character in order to track it and direct their attacks towards them.

On top of that, the Melee module also allows to cycle through a list of candidate targets.

To add new candidate targets, use the Add Target Candidate instruction. To remove it, use the Remove Target

Candidate instruction.

In most cases you'll want to set Player target candidates as soon as the enemy appears, and remove the candidate

when the enemy dies. To do so, simply add an On Start Trigger on the enemy that adds itself to the Player's candidates,

and another Trigger set to On Destroy that removes itself from the Player's target Candidates.

If your game doesn't require to cycle through targets, you can skip all this and simply use the Set Target instruction to

focus a character onto a specific enemy. You can also use the Clear Target to remove its current targeted character.

1083.1 Cycling Through Candidates

Once a character has more than 1 candidate target, it can cycle through its list to focus on a particular one. There

are multiple ways to cycle through a list of candidates:

1083.1.1 Closest Candidate

Focuses on the closest candidate to the character. This is useful for auto-targeting enemies in fast-paced games

where the enemy that's closest to the player should be prioritized.

Use the Cycle Closest instruction to automatically select the one that's closest to the character.

When to Add/Remove Candidates

Simply Focus

Page 1773

1083.1.2 Next / Previous Candidate

Focuses on the next or previous character from its internal list. This is usually done in games with few enemies on

screen where the right joystick is used for something else other than targeting. For example, pressing the left

shoulder button to cycle through the list of enemies.

Use the Cycle Next and Cycle Previous instruction to automatically select the next or previous target.

Repeatedly calling the Next or Previous candidate will circle back to the first or last position upon reaching the other

end. For example, if there's a 3 candidate list of enemies, and we're currently focusing on the 3rd and run the Cycle Next

instruction, it will jump back to the first position and focus on the first candidate on the list.

1083.1.3 Cycle by Direction

Focuses on the next candidate that most closely matches the direction given in screen-space from the character's

position and the camera reference provided. This is intended to be used with gamepads that have a right-stick that

you can use to select the next target.

Use the Cycle Direction Target instruction to select the next candidate based on the camera's perspective and

direction provided.

Circular Cycles

Page 1774

IX.II Visual Scripting

Page 1775

1084 Visual Scripting

The Melee module symbiotically works with Game Creator and the rest of its modules using its visual scripting

tools.

Instructions

Conditions

Events

Each scripting node allows other modules to use any Melee feature, and adds a list of Properties ready to be used

by other interactive elements.

Page 1776

IX.II.I Conditions

Page 1777

1085 Conditions

1085.1 Sub Categories

Melee

Page 1778

IX.II.I.I Melee

Page 1779

1086 Melee

1086.1 Conditions

Has Equipped Melee

In Attack Phase

Is Blocking

Last Cancel Successful

Time Since Last Block

Time Since Last Break

Time Since Last Parry

Page 1780

1087 Has Equipped Melee

1087.1 Description

Returns true if the Character has a specific Melee Weapon equipped

1087.2 Parameters

Name Description

Character The targeted Character

Weapon The Melee Weapon to check if it is equipped

1087.3 Keywords

Combat Melee

Melee » Has Equipped Melee

Page 1781

1088 In Attack Phase

1088.1 Description

Returns true if the character is in any of the specified attack phases

1088.2 Parameters

Name Description

Character The targeted Character

Phases The attack phases the character might be in

1088.3 Keywords

Combat Melee Attack Anticipation Strike Activation Recovery

Melee » In Attack Phase

Page 1782

1089 Is Blocking

1089.1 Description

Returns true if the specified Character is blocking attacks

1089.2 Parameters

Name Description

Character The Character that might be blocking attacks

1089.3 Keywords

Combat Melee Block Defend

Melee » Is Blocking

Page 1783

1090 Last Cancel Successful

1090.1 Description

Returns true if the last attempt to cancel a skill was successful

1090.2 Parameters

Name Description

Character The Character that might have attempted to cancel its skill

1090.3 Keywords

Combat Melee Attack

Melee » Last Cancel Successful

Page 1784

1091 Time since Last Block

1091.1 Description

Returns true if the time since the last blocked attack is less than a value

1091.2 Parameters

Name Description

Character The Character targeted

Time The maximum time for this condition to be true

1091.3 Keywords

Combat Melee Block Defend

Melee » Time since Last Block

Page 1785

1092 Time since Last Break

1092.1 Description

Returns true if the time since the last broken attack is less than a value

1092.2 Parameters

Name Description

Character The Character targeted

Time The maximum time for this condition to be true

1092.3 Keywords

Combat Melee Block Defend Broken Destroy

Melee » Time since Last Break

Page 1786

1093 Time since Last Parry

1093.1 Description

Returns true if the time since the last parried attack is less than a value

1093.2 Parameters

Name Description

Character The Character targeted

Time The maximum time for this condition to be true

1093.3 Keywords

Combat Melee Block Defend

Melee » Time since Last Parry

Page 1787

IX.II.II Events

Page 1788

1094 Events

1094.1 Sub Categories

Melee

Page 1789

IX.II.II.I Melee

Page 1790

1095 Melee

1095.1 Events

On Equip Weapon

On Input Charge

On Input Execute

On Melee Hit

On Unequip Weapon

Page 1791

1096 On Equip Weapon

1096.1 Description

Executed when the Character equips a new Melee Weapon

1096.2 Keywords

Equip Unsheathe Take Sword Melee

Melee » On Equip Weapon

Page 1792

1097 On Input Charge

1097.1 Description

Executed when the Character starts to run a Charge input command

1097.2 Parameters

Name Description

Key The key being used as a Charge command

1097.3 Keywords

Charge Input Melee Execute Hold Load

Melee » On Input Charge

Page 1793

1098 On Input Execute

1098.1 Description

Executed when the Character starts to run the Execute input command

1098.2 Parameters

Name Description

Key The key being used as an Execute command

1098.3 Keywords

Charge Input Melee Attack Strike

Melee » On Input Execute

Page 1794

1099 On Melee Hit

1099.1 Description

Executed when the Trigger receives a hit from a melee Skill

1099.2 Keywords

Active Disable Inactive

Melee » On Melee Hit

Page 1795

1100 On Unequip Weapon

1100.1 Description

Executed when the Character removes a new Melee Weapon

1100.2 Keywords

Unequip sheathe Take Sword Melee

Melee » On Unequip Weapon

Page 1796

IX.II.III Instructions

Page 1797

1101 Instructions

1101.1 Sub Categories

Melee

Page 1798

IX.II.III.I Melee

Page 1799

1102 Melee

1102.1 Sub Categories

Defense

Equip

Input

Skills

Page 1800

IX.II.III.I.I DEFENSE

Page 1801

1103 Defense

1103.1 Instructions

Set Defense

Set Shield

Start Blocking

Stop Blocking

Page 1802

1104 Set Defense

1104.1 Description

Sets the current defensive value of a Shield on a Character

1104.2 Parameters

Name Description

Character The Character that has a defensive combat value

Value The new defense value, clamped between 0 and the maximum defense value

1104.3 Keywords

Melee Combat Shield Defense Block

Melee » Defense » Set Defense

Page 1803

1105 Set Shield

1105.1 Description

Sets the Shield value

1105.2 Parameters

Name Description

To The location where to store the Shield

Shield The Shield asset reference

1105.3 Keywords

Melee Combat

Melee » Defense » Set Shield

Page 1804

1106 Start Blocking

1106.1 Description

Attempts to start blocking with the Melee stance

1106.2 Parameters

Name Description

Character The Character that starts blocking

1106.3 Keywords

Melee Combat Shield Parry Deflect Block

Melee » Defense » Start Blocking

Page 1805

1107 Stop Blocking

1107.1 Description

Attempts to stop blocking with the Melee stance

1107.2 Parameters

Name Description

Character The Character that stops blocking

1107.3 Keywords

Melee Combat Shield Parry Deflect Block

Melee » Defense » Stop Blocking

Page 1806

IX.II.III.I.II EQUIP

Page 1807

1108 Equip

1108.1 Instructions

Equip Melee Weapon

Unequip Melee Weapon

Page 1808

1109 Equip Melee Weapon

1109.1 Description

Equips a Melee Weapon on the targeted Character if possible

1109.2 Parameters

Name Description

Character The Character reference equipping the weapon

Weapon The weapon reference to equip

Model The optional 3D model instance

1109.3 Keywords

Melee Combat

Melee » Equip » Equip Melee Weapon

Page 1809

1110 Unequip Melee Weapon

1110.1 Description

Unequip a Melee Weapon from the targeted Character if possible

1110.2 Parameters

Name Description

Character The Character reference unequipping the weapon

Weapon The weapon reference to unequip

1110.3 Keywords

Melee Combat

Melee » Equip » Unequip Melee Weapon

Page 1810

IX.II.III.I.III INPUT

Page 1811

1111 Input

1111.1 Instructions

Input Charge

Input Execute

Set Buffer Window

Page 1812

1112 Input Charge

1112.1 Description

Queues a charging Melee input command on a Character

1112.2 Parameters

Name Description

Character The Character reference

Key The Input key value

1112.3 Keywords

Melee Combat

Melee » Input » Input Charge

Page 1813

1113 Input Execute

1113.1 Description

Queues an execution Melee input command on a particular Character

1113.2 Parameters

Name Description

Character The Character reference

Key The Input key value

1113.3 Keywords

Melee Combat

Melee » Input » Input Execute

Page 1814

1114 Set Buffer Window

1114.1 Description

Sets the maximum time for an input to register before it can be executed

1114.2 Parameters

Name Description

Character The Character reference

Buffer Window The time of the Buffer Window, in seconds

1114.3 Keywords

Melee Combat Buffer Window

Melee » Input » Set Buffer Window

Page 1815

IX.II.III.I.IV SKILLS

Page 1816

1115 Skills

1115.1 Instructions

Play Melee Reaction

Play Melee Skill

Reset Block Time

Reset Break Time

Reset Parry Time

Reset Skill Hits

Set Skill

Try Cancel Skill

Wait Until Phase

Page 1817

1116 Play Melee Reaction

1116.1 Description

Plays a Melee Reaction on a Character

1116.2 Parameters

Name Description

Character The Character that plays the Melee Reaction

Attacker The Character set as the attacker

Reaction The Melee Reaction asset played

1116.3 Keywords

Melee Combat

Melee » Skills » Play Melee Reaction

Page 1818

1117 Play Melee Skill

1117.1 Description

Plays a Skill on a Character regardless of the weapon or state

1117.2 Parameters

Name Description

Character The Character that plays the Skill

Target Optional reference object set as the Target of the Skill

Skill The Skill asset reference to run

1117.3 Keywords

Melee Combat

Melee » Skills » Play Melee Skill

Page 1819

1118 Reset Block Time

1118.1 Description

Resets the registered time of the last blocked attack

1118.2 Parameters

Name Description

Character The Character reference resetting the value

1118.3 Keywords

Melee Combat

Melee » Skills » Reset Block Time

Page 1820

1119 Reset Break Time

1119.1 Description

Resets the registered time of the last broken attack

1119.2 Parameters

Name Description

Character The Character reference resetting the value

1119.3 Keywords

Melee Combat

Melee » Skills » Reset Break Time

Page 1821

1120 Reset Parry Time

1120.1 Description

Resets the registered time of the last parried attack

1120.2 Parameters

Name Description

Character The Character reference resetting the value

1120.3 Keywords

Melee Combat

Melee » Skills » Reset Parry Time

Page 1822

1121 Reset Skill Hits

1121.1 Description

Resets the hit performed by the ongoing Skill

1121.2 Parameters

Name Description

Character The Character reference resetting the hit buffer

1121.3 Keywords

Melee Combat

Melee » Skills » Reset Skill Hits

Page 1823

1122 Set Skill

1122.1 Description

Sets the Skill value

1122.2 Parameters

Name Description

To The location where to store the Skill

Skill The Skill asset reference

1122.3 Keywords

Melee Combat

Melee » Skills » Set Skill

Page 1824

1123 Try Cancel Skill

1123.1 Description

Attempts to cancel an ongoing Charge, Skill or Reaction being executed by a character

1123.2 Parameters

Name Description

Character The Character reference using a Charge, Skill or Reaction

1123.3 Example 1

If you want to cancel only a specific phase (like a Reaction) check whether the current phase being played is that one

1123.4 Keywords

Melee Combat Skill Stop Reaction Charge

Melee » Skills » Try Cancel Skill

Page 1825

1124 Wait until Phase

1124.1 Description

Waits until the current Skill's phase reaches the chosen one

1124.2 Parameters

Name Description

Character The Character reference

Phase The Phase which waits to

1124.3 Keywords

Melee Combat Anticipation Strike Recovery Finish Combo Skill

Melee » Skills » Wait until Phase

Page 1826

IX.III Releases

Page 1827

1125 Releases

1125.1 2.2.11

New

Variables: Setter Properties for Melee Weapons

Changes

Support for Unity 6

Fixes

Event: On Equip Melee Weapon filters by Melee Weapon

Event: On Unequip Melee Weapon filters by Melee Weapon

Camera: Soft Lock camera incorrect NaN value if time scale is zero

Skill: On Parried no longer plays Hit Reactions if empty

1125.2 2.1.10

New

Skill: Can Block conditions for reach Skill

Skill: Can Parry conditions for reach Skill

Enhances

Striker: Capsule has option to set direction

Skill: Choose audio time scale from caster or unscaled

Fixes

Invincibility: Not considering without dashing

Skill: Always play SFX in unscaled time

Skill: If target is null plays at world origin

1125.3 2.1.9

(Latest)

Released October 18, 2024

Released July 30, 2024

Page 1828

Fixes

Internal: Support for core 2.15.49

1125.4 2.1.8

Fixes

Examples: Missing hit detections

Examples: Focus using gamepad

1125.5 2.1.7

Fixes

Skill: On Hit instructions run before victim Reaction

Editor: Compatibility with Core 2.14.46

1125.6 2.1.6

Released February 23, 2024

Released January 10, 2024

Released January 9, 2024

Page 1829

This version breaks compatibility with previous versions and will only work with Game Creator 2.13.43 or higher.

New

Component: Can Hit for hitting non-Character objects

Property: Melee Self to Target Location

Property: Melee Target to Self Location

Instruction: Set Skill

Instruction: Set Shield

Skill: On Strike sound effect option

Changes

Internal: Support for Core 2.13.42 version

Fixes

Sequencer: Instructions called after cancelling

Sequencer: Default empty values

Sequencer: Duplicate value when creating new Clip

Reactions: No reaction does not stop Gestures

Skills: Audio Clips use caster time scale

Skills: Motion Warping not detecting collisions

Removes

Properties: Location Melee Properties

1125.7 2.0.5

Fixes

Examples: Missing variables in some scenes

1125.8 2.0.4

Released October 31, 2023

Released June 13, 2023

Page 1830

Fixes

Trigger: On Hit has attacker as Target

Examples: Missing Local Name Variables

1125.9 2.0.3

New

Skill: Condition Can Hit when striking targets

Variables: Melee Weapon, Shield and Skill types

Fixes

Trigger: On Hit calls every frame during attack

Trail: Not rendering on URP/HDRP

Examples: Dash not working correctly

1125.10 2.0.2

New

Uninstall: Added option to uninstall the module

Fixes

Example: First-Person example missing character

Version: Not showing current module version

Misspell: Example scene typographic error

1125.11 2.0.1

Released June 13, 2023

Released May 25, 2023

Released April 26, 2023

Page 1831

New

First release

Released April 25, 2023

Page 1832

X. Traversal

Page 1833

1126 Traversal

This module is currently under developement

WIP

Page 1834

XI. Extensions

Page 1835

1127 Welcome to Extensions

Extensions are free packages that can be downloaded from the official Game Creator site. As its name implies,

Extensions add new features that can be easily used.

1127.1 Installation

To install an Extension, download it from the Downloads page. With your Unity project open, double click the

.unitypackage file and a screen will prompt you to choose which files you want to add to your project.

If it's the first time you're installing an extension, we recommend installing all files. Once you have more experience with

it, you can cherry pick which examples to install and which ones to ignore.

An Extension will appear like any other normal module and can be uninstalled clicking on the top toolbar → Game

Creator → Uninstall... and picking the desired module or extension to delete.

Pick all assets

https://gamecreator.io/downloads
https://gamecreator.io/downloads

Page 1836

XI.I Transitions

Page 1837

1128 Transitions

The Transitions extension allows to load a new scene using a custom loading screen, that may include game tips,

random backgrounds, animations and other kinds of visual elements.

These loading screens can be easily interchanged using the Transition asset, which is used in one of the

Instructions.

Page 1838

1129 Transitions

Transitions are configured in an asset, which accepts a prefab with a Transient component, and a collection of

optional animations that are used to fade in, out and an idle the interface screen.

We recommend duplicating any of the built-in Transition assets and modifying it to create a custom one for your game.

This asset can be used with any of the Instructions available.

Custom Transitions

Page 1839

1130 Instructions

There are a few Instructions available in this module.

1130.1 Transition to Scene

To transition from one screen to another one, use the Transition to Scene instruction, which can be found under the

Transitions category in any visual scripting dropdown list.

The first field must reference a valid Transition asset, which determines the type of screen that appears when

loading the scene.

Ticking the Wait Activation checkbox will load the scene, but won't activate it until something executes the

Transition Complete.

Ticking the Wait Activation allows long loading screens to remain after they've been loaded, so it's the user who

decides when they are ready to play the next level.

By default, all built-in Transitions wait until the player presses any input key to continue, though this can be modified

inside the transition prefab.

The Scene field allows to choose which scene to load next.

You can also specify wether to load the next scene Additively or unload every other scene and just load a new one,

using the Single option from the Mode field.

The Entries section below, just like the Load Scene instructions, allow to define where each object from the next

scene should be position. This is mostly used to post the Player at the correct door entrance when using this

method.

Press any key to continue

Page 1840

It's important to note that the loading screen doesn't pause/stop the game while it starts loading.

This means that the Player could get hit and die while the loading screen's animation is starting to run, so it's worth

considering adding mechanisms that prevents having gameplay issues with it.

1130.2 Transition Start

The Transition Start instruction is used to play a specific Transition, just like the previous instruction. However, it

won't load a new scene. This can be used to move between cameras. For example, playing a kill-cam using a

transition.

1130.3 Transition Complete

The Transition Complete instruction allows to resume and finish the current Transition being played.

This is most commonly used to transition out from a current loading screen, that's waiting for a Player input in order

to activate the newly loaded scene.

Running Time

Page 1841

XI.II Localization

Page 1842

1131 Localization

The Unity Localization asset allows to manage and show a game translated to two or more languages.

The Localization asset comes packed with a lot of out-of-the-box components that make it effortless to add

translations to your games. This page assumes you're a bit familiar with its workflows. You can learn more about it at

the Unity Localization Documentation

1131.1 Display translations

This integration allows to localize not only texts, but also Sprites, Textures and even entire Game Objects, and in all

cases it's the exact same workflow.

To display a localized Text use the Localized Text option from any of the text properties dropdown.

Once the property is created, you can choose a text entry from the Localization Table or create a new entry.

Documentation for Unity Localization

https://docs.unity3d.com/Packages/com.unity.localization@1.4/manual/index.html

Page 1843

After selecting the table entry or creating a new entry, the Instruction node title might not update its text. This is

because Unity 2022.3 and previous versions use IMGUI to render some sections of Unity Localization. You can simply

collapse and expand the instruction again to manually refresh the title.

1131.2 Change the Language

To change the language (also known as Locale), you can use the Change Language instruction. It allows to type in a

string value with the locale of the language to display.

Locales are short strings that represent a language. For example, English is usually typed as en and Spanish as es .

There are also regional locales, such as en-CA for Canadian English or en-US for United States English.

Node Title

About Locales

Page 1844

1131.3 Detect Language Changes

To detect when the currently selected locale has changed, use the On Change Language event Trigger, which is

executed every time a new language is selected.

Depending on the scene, it might not be possible to update the texts displayed on screen to the new language. In these

cases, it's best to simply reload the scene after changing the language, so all text and assets that are localized are re-

constructed again with the new locale values.

Text Refresh

Page 1845

1132 Examples

The Localization integration kit comes with an example scene that shows how to change a Sprite and a text based

on the currently selected language.

Because Unity Localization uses Addressables to load in the translation tables, there is unfortunately no way to install

the example with everything set up. This page will guide you on how to properly configure it.

1132.1 Setup

Once the Localization package and integration kit have been installed, open the Game Creator's Install window and

proceed to install the Localization Examples.

Select and open the example scene. The Hierarchy view shows a canvas with a white square, and two buttons that

read English and Spanish. These buttons change the language of the game, using the Change Language instruction.

The Trigger_Start is called as soon as the game starts, and simply executes the instructions from the trigger below.

The Trigger_Set_Language is executed as soon as the game language is changed. This updates the Image

component with a localized one, as well as the text of the Title.

Example Setup

Page 1846

Head to the top toolbar and open/create the Localization Tables by selecting Window → Asset Management →

Localization Tables.

If you haven't created any tables yet, the window will prompt you to create a Settings asset and where you want to

save it.

After that, you'll be able to create a new Localization Table by clicking on the left corner of the window, where it says

"New Table Collection". This will create an asset that stores either string (texts) or asset translations.

Before creating any tables, the Locales need to be defined.

Locales are short texts that represent a language. For example es means Spanish and en represents English. There

are also regional locales, such as en-UK which is the English spoken on the United Kingdom.

Click on Locale Generator and select English and Spanish (en and es respectively).

Let's create two Table Collections:

MyTexts: Select the String Table Collection to store the localized texts of the game.

MyAssets: Select the Asset Table Collection to store the localized assets of the game.

Select the MyTexts and add a new entry called game-title and set the following texts:

en : Dawn of the Wolf

es : El Amanecer del Lobo

Select the MyAssets and add also a new entry called game-poster with the following sprites:

en : Poster_EN.png

es : Poster_ES.png

What are Locales

Page 1847

You'll find these sprites inside the example folder at

Assets/Plugins/GameCreator/Installs/Localization.Examples/Localization/Sprites/ .

1132.2 Example

Now that the example is set up, all that needs to be done is to link the table collection data with the Image and Text

components from the scene.

To do so, select the Trigger_Set_Language trigger and expand both instructions.

On the Set Sprite instruction, change the Sprite field to Localized and select the key game-poster key.

On the Set Text instruction, change the Text field to Localized and select the key game-title key.

Alternatively you can also set the entry from inside the Property of the Instruction.

Create a new Entry

Page 1848

Page 1849

Click play and see how clicking on the buttons changes the game's language as well as the Image and Title texts.

Page 1850

XI.III Addressables

Page 1851

1133 Addressables

The Addressables integration allows to better manage your game's memory footprint and have control over when

objects are loaded on memory and when they are released.

This page assumes you are familiar with Unity's Addressables workflow. If not, check the official documentation on

Unity Addressables.

The easiest way to load an object from an Addressable Group is choosing the Addressable option from a property

field, and dropping in either the Addressable ID or the Asset Reference object.

When attempting to retrieve this object, the main thread will be blocked until the object is loaded. This option is

perfect for small objects that are found inside the executable and do not need to be downloaded through the

internet.

When using addressables via properties, the object loaded is automatically scheduled to be released on the next frame.

If you want to keep the object in memory so it can be used without loading it back again, use the Load Addressable

instruction.

If you prefer to decide when to load an addressed object and not unload it just afterwards, you can use the

instruction Load Addressable Asset.

About Addressables

Automatic Release

https://docs.unity3d.com/Packages/com.unity.addressables@1.21/manual/index.html

Page 1852

This instruction allows to load an addressable object using three mechanisms:

Synchronous: Blocks the main thread and won't resume it until the object is loaded. This should not be used

unless the object is very small and is bundled with the executable.

Asynchronous Wait: Starts loading the asset in the background, and the instruction waits until it's completed. The

next instruction will either have the asset loaded (unless it has failed, and the value is then null).

Asynchronous Forget: Starts loading the asset in the background but does not wait until it has been completed.

We do not recommend using this method unless you know what you're doing.

Once the asset is loaded it can be instantiated without worrying about bringing it from disk to memory (or server to

memory).

To release an asset from memory, use the Release Addressable Asset instruction. This will automatically remove it

from memory.

Page 1853

1134 Examples

The Addressables integration kit comes with an example scene that shows how to instantiate a game object from

an addressable asset, as well as another one that pre-loads it in the background.

Due to how Unity Addressables is coded, it is not possible to share addressable groups, and thus the example scenes

require some minor setup. This page explains the steps to do so.

1134.1 Setup

After installing the Addressables package as well as the Addressables Integration kit from the Downloads page,

open the Install window and proceed with the installation of the Addressables Example.

Once installed, click on the Select button or navigate to

Assets/Plugins/GameCreator/Installs/Addressables.Examples/ , where there are three items:

The scene 1_Instantiate_GameObject, which shows how to easily instantiate a game object using an

addressable.

The scene 2_Load_And_Instantiate, which shows also how to instantiate a game object, but preloading it

beforehand.

Example Setup

https://gamecreator.io/downloads

Page 1854

The prefab Cube_Prefab that is used as an example object to be used in both examples.

Before opening any scene, the Addressables settings must be configured. To do so, open the Addressables Group

window by selecting from the top toolbar Window → Asset Management → Addressables → Groups.

If you don't have any Addressables settings configured, the window will prompt you to create them. Click on the

Create Addressable Settings and wait until it completes.

Now that the settings are complete, we can proceed to configure the examples.

1134.2 Examples

Open the first example scene 1_Instantiate_GameObject. This scene has a UI that allows to instantiate a game

object by clicking a button.

Select the Actions object at the bottom, which is responsible for instantiating the Cube_Prefab object. Before doing

so, we need to register this asset as an Addressable Asset.

To do so, it's very easy. Simply open the Addressables Group window just like we did in the previous section, and

drag and drop the Cube_Prefab prefab onto the window.

Page 1855

Now that the Cube_Prefab is marked as an addressable, head to the Actions object and click on the right-most

object picker from the Addressable Reference field and choose the prefab we just set up.

That's it! Entering play-mode will allow to click onto the Instantiate button, which loads and instantiates the game

object at the center of the screen.

The second example's configuration is pretty much the same, except there's another Actions component called

Actions_Load, which preloads the prefab before instantiating it. All that requires is to choose the Cube_Prefab

addressable reference from the object picker, just like in the previous example.

Page 1856

Entering play-mode will not allow to instantiate the object directly. Instead, the object must be loaded before hand.

Once it's finished, the Instantiate button will become enabled and ready to be used.

Page 1857

XI.IV Footsteps

Page 1858

1135 Footsteps

The Footsteps Generator kit is an extension that allows to setup existing animations and turn them into Game

Creator compatible clips with correct foot placement.

1135.1 How Footsteps work

Game Creator uses the animation parameters Phase-0 , Phase-1 , Phase-2 and Phase-3 to detect which feet and

when a foot is on ground.

Humanoid characters use Phase-0 and Phase-1 for their left and right leg respectively. Non-humanoids can use

phases in any other order.

For example, when the Phase-0 curve point has a value of 0 means the foot is on air. If a point has a value of 1

means the foot is in a grounded phase.

1135.2 Creating Phases

To add or modify an animation curve phase, open the Settings window by clicking on the top toolbar → Game

Creator → Settings, and navigate to the Footsteps section.

Humanoids

Page 1859

To start creating or modifying an Animation Clip phase group, click on the button Enter Footsteps Mode. The scene

view and hierarchy panel will change into one similar to the ones when editing a prefab.

If you're working on a non-humanoid or a different character than the default one, drag and drop your prefab model

onto the field below the previous button and click the Change Character button. This will change the preview character.

Drag and drop the Animation Clip onto the animation field. After doing so, the rest of options will be available.

You can use the slider below to scrub through the animation in order to preview it in the scene view.

Change Character

Page 1860

There are a few options below:

Set as Grounded button allows to automatically set all 4 curves at a constant value of 1. This is meant for idle

poses where the character doesn't lift its feet from the ground.

Set as Airborne button does the opposite and sets all 4 curve phases to a constant value of 0. This is meant for

any airborne animations, such as falling, jumping and such.

The 4 animation curves can also be manually edited below, and committing the changes by pressing the Set

Animation Curves.

1135.3 Creating Humanoid Phases

To speed up the workflow, this tool also allows to detect when the feet are above or below ground level and set the

curve values automatically. To do so, simply click the Automatic Human Footsteps.

The Ground Threshold value determines an offset vertical value where the ground would be. If the curves appear to

be jittering, try playing with values between 0.01, 0.05 and 0.1.

